ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИС ТРОВ СССР ПО ДЕЛАМ СТРОИТЕЛЬСТВА / ГОССТ РОЙ СССР /

типовые конструкции, изделия и узлы зданий и сооружений

Серия 1.420 –12 /дополнение к серии ии20 /70 / КОНСТРУКЦИИ МНОГОЭТАЖНЫХ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ С СЕТКАМИ КОЛОНН 6×6 и 9×6 М под нагрузки соответственно до 2500 и 1500 кгс/м²

Выпуск 0-2

материалы для проектирования зданий с сеткой колонн 9-х6 м с перекрытиями типа 1 из плит, опирающихся на полки ригелей

Часть 1

<u> 15749— D1</u> ЦЕНА 2-70 ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР ПО ДЕЛАМ СТРОИТЕЛЬСТВА
/ ГОССТРОЙ СССР /

типовые конструкции, изделия и узлы зданий и сооружений

Серия 1.420-12 /дополнение к серии ии20/70/ КОНСТРУКЦИИ

МНОГОЭТАЖНЫХ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ С СЕТКАМИ КОЛОНН 6 × 6 И 9 × 6 И под нагрузки соответственно до 2500 и 1500 кгс/м²

Выпуск 0-2

материалы для проектирования зданий с сеткой колонн 9 ×6 м с перекрытиями типа 1 из плит, опирающихся на полки ригелей

Часть !

Р АЗРАБОТАНЫ ЦНИ**ИПРОМЗД**АНИЙ, ЛГПИ и ГСПИ-10 лри участий НИИЖБ У ТВЕРЖДЕНЫ и введены в действие с 1.03. 1979 г Государственным Комитетом Совета министров СССР по делам строительства Постановление х 186 от 26 12-1978 г

3	·		соде	:ржанив		. 2
		Листы	Crp.	•	Incth	Crp.
	Часть 4 Раздел І. Пояснительная записка	III ÷ II47	3–44 45	Маркировочные схемы раскладки плит и ригелей пок- рытия шириной 3,0 и I,5 м при решении температур- ного шва со вставкой и без вставки	68 - 7I	II4 - II7
	Маркировочные схемы поперечных рам: 2-9-3(36), 2-9-4(36), П-9-3(36), П-9-4(36). Маркировочные схемы продольных рам	1-10	46-55	Раздел IУ. Таблица подбора неооходимого числа продольных рам. Маркировочные схемы вертикальных связей. Усилия от нормативных нагрузок на фундаменты колоны		II8
	2-9-3(48), 2-9-4(48), П-9-3(48), П-9-4(48), 2-9-3(60,48), 2-9-4(60,48), П-9-3(60,48), П-9-4(60,48) Маркировочные схемы поперечных и продольных рам:	II - I8	56-63	Таблицы подбора необходимого числа продольных рам по средним рядам колонн на сдин блок здания. Высота этажей 3,6 м; 4,8 м; 6,0-4,8 м; 6,0 м и 7,2-6,0 м.	707h	119–121
	2-9-3(60), 2-9-4(60), N-9-3(60), N-9-4(60), N-9-3(72,60), N-9-4(72,60)	I9-26	64 - 7I	Маркировочные схемы вертикальных связей для зданий с высотами этажей 3,6; 4,8; 6,0-4,8 м; 6,0 м;	72-14	119-121
дурного Гапеенксв	Маркировочные схемы поперечных рам: 2-9-3(48,48,72), 2-9-4(48,48,72), 2-9-3(60,60,72), 2-9-4(60,60,72)	27-34	7 2 - 79	7,2-6,0 м; 4,8-4,8-7,2 м; и 6,0-6,0-7,2 м	75-77	I22 - I24
1 - ATPR	Таблицы рабочих марок ригелей, колонн и монтажных деталей. Вариант с применением колонн из бетона марки "600"	35 - 4I	80–86	таблице для подбора рабочих марок связей для здания с высотой этажей 3,6 м; 4,8 м; 6,0-4,8 м; 6,0; 7,2-6,0 м; 4,8-4,8-7,2 м и 6,0-6,0-7,2 м	78-83	125-130
00.00	Маркировочные схемы раскладки плит шириной 3 м между- этажных перекрытий и покрытий при решении температур- ного шва со вставкой и без вставки	42,43	87,88	Маркировочные схемы вертикальных связей для зданий с высотами этажей 4,8 м; 6,0 м; 6,0-4,8 м; 7,2-6,0 м; 4,8-4,8-7,2 м; 6,0-6,0-7,2 м	8 4	131
THE THE	Раздел Ш. Маркировочные схемы поперечных и продольных рам с применением в покрытии плит по серии 1.465-7 Маркировочные схемы поперечных и продольных рам:		89	Таблица для подбора рабочих ызрок связей (варизнт		
E L	2-9-3(36), 2-9-4(36), 11-9-3(36), 11-9-4(36)	44 - 51	90-97	постановки связей в каждом ряду)	85 86-T04	132 - 133-151
13 DAILI	Маркировочные схемы поперечных и продольных рам; 2-9-3(48), 2-9-4(48), П-9-3(48), П-9-4(48), 2-9-3(60,48),2-9-4(60,48),П-9-3(60,48),П-9-4(60,48).	52-59	98-105		00 10.	100 131
HHUUNDUME ANNING TALLING MAY NOT TO	Маркировочные схемы попереченх и продольных рам: 2-9-3(60), 2-9-4(60), П-9-3(60), П-9-4(60), 2-9-3(72,60), П-9-3(72,60), П-9-4(72,60)	60-67	106-113	ТК Содержание	B	1.420-12 Bbinyck 0-2
1.	12.7			-1	749-01	.3

<u>РАЗДЕЛ І</u> ВВЕЛЕНИЕ

Рабочие чертежи конструкции многоэтажных производственных зданий серии I.420-I2 представляют собой вариант усовершенствованных конструкции серии ИИ20/70, который имеет следующие отличия от конструкции серии ИИ20/70:

- стык колонн осуществляется с помощью ванной сварки выпусков стержней продольной арматуры, что исключает применение стальных оголовков у колонн и снижает их трудоемкость изготовления и монтажа, экономия стали на один стык составляет 40-50 кг длины сварных швов 5-10 п.м.;
- предусматривается раскладка стеновых панелей с отметкой верха подоконника 900 мм от уровня пола ваамен 1200 мм;
- в торцах зданий с сеткой колонн 6x6 м стеновые панели крепятся к колоннам торцевой рамы и только в верхнем этаже, при пролете 18 м, крепятся к двум фахверковым стойкам, устанавливаемым на
 оголовки колонн (в уровне перекрытия верхнего этажа). Исключение
 фахверковых стоек позволяет уменьшить расход стали на 2 кт на м2
 развернутой площади здания;
- в зданиях с сеткой колонн 9x6 м панели торцевых стен навешиваются частично на колонны каркаса и частично на промежуточные поэтажные факверковые стойки, что позволяет снизить расход стали на I кг на I м2;
- для торцевых рам разработаны чертежи колоны, в которых предусмотрены закладные детали для навески стеновых панелей;
- в ригелях торцевых рам исключена полка для опирания плит со стороны торцевой стены;
- для зданий из плит, опирающихся на ригели прямоугольного сечения разработаны новые ригели высотой 500 мм, что обеспечило открывание окон торцевой стены;
- предусмотрен вариант каркаса с использованием колонн из бетона марки 600, что частично снизит расход бетона или стали и расширит область применения колонн сечением 400х400 для ряда габаритных схем:
- разработаны перекрытия с плитами шириною 3,0 м укладываемые на полки ригелей с предварительным ну пряжением арматуры по серии ИИ24-8, что по сравнению с применявшимися плитами с обычным армированием и шириной 1,5 м сокращает почти на половину

число монтажных элементов и снижеет расход стали до 3,0 кг. на I м2 развернутой площади перекрытий:

- предусмотрен вариант покрытия с применением типовых плит одноэтажных зданий Для зданий с перекрытиями из плит, опирающихся на полки ригелей разработаны ригели покрытия и колонны верхнего яруса. Сокращение расхода стали и бетона на І м2 покрытия составило: для зданий с сеткой колонн 9х6 м от 2,5 до 5,5 кг и 0,074 м3; для зданий с сеткой колонн 6х6 м с перекрытиями из плит, опирающихся на полки ригелей, от 2,0 до 7,0 кг и 0,084 м3, а с перекрытиями из плит, опирающихся на ригели прямоугольного сечения, до 2,6 кг и 0,055 м3.

Общая часть

Рабочие чертежи конструкций заводского изготовления для многоэтажных производственных зданий разработаны применительно к унифицированным габаритным схемам в соответствии с распоряжением Госстроя СССР от 2 июля 1963 г. № 163.

Конструкции разработаны для зданий с сеткой колонн 6х6 м под нормативные временные длительные нагрузки на междуэтажные перекрытия 1000, 1500, 2000, 2500 кгс/м2 и для зданий с сеткой колонн 9х6 м под нормативные временные длительные нагрузки на перекрытия 500, 1000 и 1500 кгс/м2.

Конструкции зданий с сеткой колонн 6x6 м запроектированы с междуэтажными перекрытиями двух типов: с опиранием плит перекрытий на полки ригелей (тип I), с опиранием плит перекрытий поверх ригеля (тип 2). Конструкции зданий с сеткой колонн 9x6 м запроектированы с опиранием плит перекрытий только на полки ригелей.

Серия I.420-I2 состоит из общих альбомов, содержащих материалы для проектирования, альбомов рабочих чертежей колонн, ригелей торцовых рам, ригелей покрытий, деталей сопряжения элементов несущего каркаса, деталей сопряжения плит, деталей парапетов и температурных швов и разных стальных конструктивных элементов.

Перечень выпусков (альбомов) настоящей серии и используемых материалов серий ИИ20, ИИ20/70, 2.430-17 и 1.465-7 приведен в таблице 1 на стр.4-8.

TK 1976

Пояснительноя записка

1,420-12 BUNYCK 0-2 NUCM N-1

Таблица I ПЕРЕЧЕНЬ АЛЬБОМОВ, ВИПУСКОВ, ИСПОЛЬЗУЕМИХ ПРИ РАЗРАБОТКЕ КАРКАСОВ ПО СЕРИИ I.420-I2

1		1121 15	ABID ANDRONOD, DHILLOROD, MCHONDSJEMEN HER ENGLADOTHE LE	I RECOD TO CELTAI 1.420-12
n/n	Шифры альбоков	Тип перемрития Сетна колонн	Название альбомов	Проектные материалы альбомов (выпусков), используемые при разработке каркасов
I	2	3	4	5
			А. Материалы для проектирования.	
I. 2.	1.420-I2 BHHYCK 0-I VACTE I 1.420-I2 BHHYCK 0-I VACTE 2	_ <u>T</u> 6x6	Материалы для проектирования зданий с сеткой колонн 6x6 м с перекрытиями типа I из плит, опирающихся на полки ригелей.	В частях I даны общие сведения по составу ра- бочих четтемей, описание конструктивних решения, данные о нагрузгах и расчете конструкций. Сс- новние положения по монтажу конструкций и мар- кировочные схемы поперечных и продольных рам, маркировочные схемы перекрытий с раскладкой плит шириной 3,0 и 1,5 м.
3.	I.420-I2 BUNDER 0-2 VACTE I I.420-I2 BUNDER 0-2 VACTE 2	<u>I</u> 9x6	Материалы для проектирования зданий с сеткой колонн 9x6 м с перекрытиями типа I из плит, опиравщихся на полки ригелей.	В частях 2 дани таолици подбора неооходилсто числа продольных рам по среднит рядам полока на один блок здания, маркировочные схеми верти-кальных связей (варианты резрешенной постановки и постановки в каждом ряду), схеми расположения вертикальных связей в плане, таолицы для подоора рабочих марок связей, усилия от нормативных нагрузок на фундаменты колоки.
5 ,	I.420-I2 BHHYCR U-3 VACTE I I.420-I2 BHHYCR U-3 VACTE 2	<u>2</u> 6x6	Материали для проектирования здании с сеткои колонн бх6 м с перекрытиями типа 2 из плит, опиравщихся на ригели прямоугольного сечения.	
7.	I.420-I2 выпуск 0-4	1;2 6x6;9x6	Материалы для проектирования крепления панельных стен.	Наркировочная схена деталей крепления продоль- ных и торцевых стен; маркировочкая схема стсек фахверка и деталей их крепления.
8.	ий 20-5	1;2 6x6;9x6	Материалы для проектирования зданий с сеткой колонн бхб м и 9хб м из типовых сборных железобетонных кон- струкций серий ИИ22-ИИ24.	Характеристики конструкции для расчета элементов каркаса по несущей способности, деформациям, раскрытив тредин; усилия в колоннах и связях от ветровых нагрузок.
9.	ии20-6	1;2 6x6	Материали для проектирования зданий с сеткой колонн бх6 м из типовых соорных железобетонных конструкций серии ии22. Ии24. Усилия в стержнях поперечных рам от единичных нагрузок.	Таблицы для выполнения статического расчета поперечных рам каркасов зданий, проектируемых
10.	ил20-7	I9x6	Материалы для проектирования зданий с сеткой колонн 9x6 м из типовых соорных железобетонных конструкций серии ИИ22+ИИ24. Усилия в стержнях поперечных рам от единичных нагрузок.	по унифицированным габаритным схемам при раз- личных видах нагрузок и схемах загружений.
				1420-12

TK

Паяснительная записка

1420-12 Bouryer 0-2

Таблица	a 1	. (πηο	πο	πже	פעע	١
TOOMERING		٠ (upo	щυ	лас	HNC	,

2 20-8 560M I KOPPE KT UPO H B 1972r. 20-8 560M 2/70	3 <u>I : 2</u> 6x6; 9x6 <u>I</u> 6x6; 9x6	4 Материалы для проектирования лестниц в зданиях с перекрытиями типа I из плит, опирающихся на полки ригелей и типа 2 с опиранием на ригели прямоугольного сечения. Материалы для проектирования лестниц в зданиях с пе-	5 Маркировочные схемы и ключи для подбора марок ригелей, расположенных в ячейках с
ьбом I корректиро - н в 1972г. 20-8 ьбом 2/70	6x6;9x6 <u>I</u>	перекрытиями типа I из плит, опирающихся на полки ригелей и типа 2 с опиранием на ригели прямоугольного сечения.	марок ригелей, расположенных в ячейках с
ьбом 2/70		Материалы иля проектирования лестниц в зданиях с пе-	TO O MITTER COLUM
T 2270T.0-77*	OXOTOXO	рекрытиями типа I из плит, опирающихся на полки ригелей	лестницами.
65-7 вып.0	<u> </u>	Сборные железобетонные предварительно напряженные плиты для покрытий производственных зданий. Общие материалы.	Указания по применению; маркировка и номен- клатура плит.
		Б. Материалы для изготовления конструкций.	
420-12 пуск I,часть и часть 2	112 6x6;9x6	Железобетскиме колонны с применением стыков на ван- ной сварке, высоты этажей 3,6 м.	Рабочие чертели колона для зданий с высо- той этажей 3,6 метра.
420-I2 1yck 2 1yck 2 1yck 2 1yck 2	1;2 6x6;9x6	Железобетонные колонны с применением стыков на ван- ной сварке. Высоты этажей 4,8 и 6,0 м.	Рабочие чертежи колони для зданий с высо- той этажей 4,8 метра и с высотой первого этажа 6,0 метров.
.420-I2 iycx 3 эть I и	<u> </u>	Железобетонные колонны с применением стыков на ван- ной сварке. Высоты этажей 5,0, 7,2 и 10,8 м.	Рабочие чертежи колонн для зданий высотой этажей 6,0 метров и с высотой первого этажа 7,2 м и зданий с укрупненной сеткой с высо-тами верхних этажей 7,2 и 10,8 метра.
120-12 1yck 4	<u>I</u> 6x6;9x6	Железобетонные колонны верхних этажей с применением стыков на ванной сварке. Высота этажей 3,6; 4,8 и 6,0 м (Решение покрытия с использованием типовых плит одноэтажных зданий).	Рабочие чертежи колонн верхних этажей для варианта каркаса с применением в покрытии плит одноэтажных эданий
120-12 1yck 5	1;2 6x6;9x6	Закладные детали колонн. Высоты этажей 3,6;4,8; 6,0; 7,2 и 10,8 м.	Рабочие чертежи закладных деталей, исполь- зуемых при изготовлении колонн приведенных в выпусках 1,2,3 и 4 серии 1,420-12 (см.п.п. 14,17).
23-1/70	<u>I</u> 6x6	Железобетонные ригели пролетом 6 м с полками для опи- рания плит.	Рабочие чертежи ригелей поперечных рам: рядо- вых, связевых и у тем. шва; ригелей продольных рам для зданий с сетками колонн 6х6 и 9х6 м.
120-12 1yck 6	<u>I</u> 6x6	Железобетонные торцевые ригели пролетом 6 м с полками для опирания плит.	Рабочие чертежи поперечных ригелей торцевых рам.
23-2/70	<u>I</u> 9x6	Железобетонные ригели пролетом 9 м с полками для опи- рания плит.	Рабочие чертежи ригелей поперечных рам: рядовых, связевых и у тем. шва.
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	yck I, vacts vacts 2 20-I2 yck 2 rs I w rs 2 420-I2 yck 3 rs I w rs 2 20-I2 yck 4 20-I2 yck 5 3-I/70 20-I2 yck 6	yck I, vactb	12

5

			• .	n .
ī	2	3	4	5
22.	I.420-I2 выпусж 7	<u>I</u> 9x6	железобетонные торцевые ригели пролетом 9 м с полками для опирания плит.	Рабочие чертежи поперечных ригелей торцевых рам.
23.	ИИ23-3/70	<u>2</u> 6x6	желе зобетонные ригели прямоугольного сечения проле- том 6 м.	Рабочие чертежи ригелей поперечных рам:рядовых, связевых и у тем.шва;ригелей продольных рам.
24.	I.420-I2 выпуск 8	2 6x6	Железобетонные торцевые ригели прямоугольного сечения пролетом 6 м.	Раосчие чертежи поперечных ригелей торцевых рам.
25.	ИИ23 - 9 ^ж	<u>I</u> 9x6	Железобетовные ригели пролетом 9 м с полками для опи- рания плит с прядевой напрятаемой арматурой.	Рабочие чертеки ригелей; указания по приме- нению; ключ подоора марок ригелей для скем по серии ИИ20-2/70.
26.	NN53-10 _x	<u>I</u> 9x6	Железобетонные ригели пролетом 9 м с полками для опи- рания плит с проволочной напрягаемой арматурси.	-
27.	I.420-I2 выпуск 9	<u>I</u> 6x 63 9x 6	Железобетонные ригели прямоугольного сечения пролетом б и 9 м для покрытия (решение покрытия с использова- нием типовых плит одноэтажных зданий).	Рабочие чертежи ригелей покрытий, используе- мых при применения плит одноэтажных зданий
28.	NN53-II	<u>I</u> 6x6	Ригели из легких оетонов пролетом 6 м с полками для опирания плит (вариант серии ИN23-I/70).	Рабочие чертежи поперечных и продольных ри- гелей из легких бетонов для зданий с сеткой
29.	MM23-12		Ригели из легких бетонов пролетом 6 м прямоугольного сечения (вариант серии ИИ23-3/70).	колонн бхб м с перекрытиями типов I и 2.
30•	ии29-2/70	<u>I</u> 6x6;9x6	Разные стальные конструктивные элементы для зданий с перекрытиями типа I из плит, опирающихся на полки ригелей.	Рабочие чертежи металлических, вертикальных связей продольной устойчивости зданий и сталь- ных соединительных элементов /ММТ-БМД56 /.
31.	ии29-4/70	2 6x6	Разные стальные конструктивные элементы для зданий с перекрытиями типа 2 из плит, опирающихся на ригели прямоугольного сечения.	Рабочие чертежи металлических вертикальных связей продольной устойчивости зданий и стальных соединительных элементов. / 114 14 14 58 /.
32.	1.420-I2 выпуск I6	<u> </u>	Разные стальные конструктивные элементы./ММ63+ММ90/.	Рабочие чертежи стальных соединительных эле- ментов (марки ММ), используемых при монтаже каркаса, плит перекрытий и покрытий.
33•	ии29-3/70	<u>2</u> 6x6	Разные железобетонные конструктивные элементи для зданий с перекрытиями типа 2 из плит, опирающихся на ригели прямоугольного сечения.	Рабочие чертежи желёзобетонных балок для опирания провисающего оборудования и под горизонтальные аппараты.
34•	2.430-17 выпуск 2	<u> </u>	Типовые монтажные детали стен многоэтажных производ- ственных зданий. Разные стальные конструктивные элементы стен.	Рабочие чертежи элементов стального фахверка для стеновых панелей серии 1.432-5, опорные консоли, насадки и детали крепления.

ж) Распространяется ПНИИпроизданий

TK 1976

Пояснительная записка

1.420-12 Bbinyck 0-2 Sucm 17-4

	,			
I	2	3	? 4	5
35.	ии27-І	<u>I;2</u> 6x6;9x6	Лестницы с кирпичными стенами. Марши, площадки балки.	Рабочие чертежи лестничных маршей, лестнич
36.	ии27-2	<u> </u>	Лестницы с кирпичными стенами. Ограждения и разные стальные элементы.	ных площадок, балок, стальных ограждений и переходных мостиков из рифленой стали.
37.	ИИ24-2/70	<u>2</u> 6x6	железобетонные плиты для перекрытий типа 2, с опира- нием г: ригели прямоугольного сечения.	Рабочие чертежи преднапряженных плит перев тий и покрытий с опиранием на ригели прямо ного сечения, армированных стержнями класса
38.	ии24-5/70	- <u>2</u> 6x6	Железобетонные плиты с отверстиями для покрытий типа 2, с опиранием на ригели прямоугольного сечения.	АШВ и А-ІУ.
39.	ии24-6	<u>2</u> 6x6	Железобетонные плиты для перекрытий типа 2, с опиранием на ригели прямоугольного сечения (армированные сталью классов А-У, Ат-У, Ат-УI и прядями класса П-7).	Рабочие чертежи предварительно напряженных плит перекрытий и покрытий с опиранием на ригели прямоугольного сечения, армированны стерянями класса А-У, Ат-У, Ат-УІ и прядям П-7.
40.	ии24-8	<u>I</u> 6x6 ; 9x6	Предварительно напряженные железобетонные плиты перек- рытий шириной 3 м, укладываемые на полки ригелей.	Рабочие чертежи плит шириной 3,0 м, армиро ных стержнями классов А-Шв, А-ГУ,А-У,Ат-У, Ат-УI и пряднии П-7.
41.	<u>и</u> 124 – 9	<u>I</u> . 6x6 3 9x6	Предварительно напряженные железобетонные плиты перек- рытий шириной I,5 к и ненапряженные плиты шириной 0,75 к, укладываемые на полки ригелей.	Рабочие чертежи плит I, b м, армированных с нями классов А-Шв, А-ГУ, АТ-У, АТ-УІ и пря П-7 и доборные ненапряженные плиты шириной 0,75 м для I и 2-го типов перекрытий.
42.	พม24-7	<u>I;2</u> 6x6;9x6	Плиты из легких остонов для перекрытий типа I, с опира- нием на полки ригелей и типа 2, с опиранием на ригели примоугольного сечения (вариант серии ИИ24-I/70, ИИ24-2/70, ИИ24-4/70 и ИИ24-5/70).	Рабочие чертежи ненапряженных плит перекры и покрытий типа I шириной 1,5 и 0,75 м и напряженных плит типа 2 шириной 1,5 м из коетонов.
43.	ии24-10	<u>I</u> 6x6 ; 9x6	Предварительно напряженные плиты из легких бетонов для перекрытий типа I шириной 3 и 1,5 м и ненапряженные плиты шириной 0,75 м (вариант серий ИИ24-8 и ИИ24-9).	Рабочие чертежи плит перекрытий и покрытий шириной 3; I,5 и 0,75 м из легких бетонов.
44.	ГОСТ 2270I.0-774 ГОСТ 2270I.5-77 I.465-7 вып,0, 3,4	<u>1;2</u> 6x6;9x6	Сборные железобетонные предварительно напряженные плиты для покрытии производственных здании. Рабочие чертежи.	Рабочие чертежи плит 3х6 м и I,5х6 м для различных эксплуатационных условий.
45.	I.462-3 выпуски I+3	1;2 6x6;9x6	Железооетонные предварительно напряженные двускатные решетчатые балки для покрытий промышленных зданий.	Рабочие чертежи железосетонных предварители напряженных двускатных решетчатых балок. Номенклатура балок. Алюч для подбора.

Пояснительная записка

Boinyck 0-2 Sucm

,			·	Таблица I (продолжение) 8
Ī	2	3	4	5
			В. Материалы для выполнения строительно-монтажных работ	
46.	TAM22-I/70	<u>I</u> 6x639x6	Детали сопряжений конструктивных элементов несущего каркаса для зданий с перекрытиями типа I из плит, опирающихся на полки ригелей.	Детали крепления ригелей рядовых рам, ригелей продольных рам, металлических связей и стро-пильных балок. /Детали № 1.35, 42/.
47.	I.420-I2 выпуск IO	I 6x6 ; 9x6	Детали сопряжений конструктивных элементов несущего кар- каса для зданий с перекрытиями типа I из плит, опирав- щихся на полки ригелей.	Монтажные детали сопряжения ригелей торцевых рам и ригелей покрытия (для плит одноэтажных эданий) и стыков средних, крайних и торцевых колонн. /Летали № 43.65/.
48.	ТДМ22-2/70	2 6x6	Детали сопряжений конструктивных элементов несущего каркаса для зданий с перекрытиями типа 2 из плит, опи- равщихся на ригели прямоугольного сечения.	Детали крепления ригелей рядовых рам, ригелей продольных рам, металлических связей, стро-пильных и подкрановых оалок./Детали № 1.22, 30.32/.
49.	I.420-I2 Bunyck II	2 6x6	Детали сопряжений конструктивных элементов несущего каркаса для эданий с перекрытиями типа 2 из плит, опи-рающихся на ригели прямоугольного сечения.	Монтажные детали сопряжения ригелей торцевых рам и стыков средних, кралник и торцевых колоны./Детали # 33+49/.
50.	I.420-I2 выпуск I2	<u>I</u> 6x6 ;9 x6	Детали сопряжений плит перекрытий типа I с опиранием на полки ригелей.	Рабочие чертежи монтажных деталей сопряжения плит перекрытий и покрытий с конструкциями каркаса здания.
51.	I.420-12 выпуск I3	2 6x6	Детали сопряжений плит перекрытий типа 2 с опиранием на ригели прямоугольного сечения.	
52.	1.420-12 энпуск 14	1:2 6x6;9x6	Детали сопряжения плит покрытия (решение покрытия с использованием типовых плит одноэтажных зданий).	Рабочие чертежи монтажных деталей сопряжения плит покрытий с конструк- циями каркаса здания.
53.	1.420-12 выпуск 15	<u>I:2</u> 6x6;9x6	Детали парапетов и температурных швов (решение покрытия с использованием типовых плит одноэтажных здании).	Рабочие чертежи деталей парапетов и темпе- ратурных швов.
54.	2.430-17 выпуск I	<u></u>	Монтажные детали стен многоэтажных производственных зданий.	Детали крепления фахверка, насадок, опорных консолей, стеновых и парапетных панелей.
55.	ТДА24-1/70	<u>I</u> 6x6;9x6	Детали парапетов и температурных швов для зданий с перекрытиями типа I из плит, опирающихся на полки ригелей.	Архитектурно-строительные детали улепленных покрытий бесчердачных производственных зданий
56•	TIA24-2/70	_2 6x6	Детали парапетов и температурных швов для зданий с перекрытиями типа 2 из плит, опирающихся на ригели прямо- угольного сечения.	с плоской кровлей, внутренними водостоками
57.	ТДМ27-І	<u>I:2</u> 6x6;9x6		Монтажные детали сопряжений конструктивных элементов лестниц и рамного каркаса.
58.	тда27-і	<u> </u>	Лестницы с кирпичными стенами. Детали.	Архитектурно-строительные детали лестницы и примыкающих к ним элементог эдания.

при проектировании и строительстве конкретных зданий из полного перечия альбомов, помещенных в таблице I, следует использовать те альбоми, которые соответствуют типу перекрытия и сетке колони, принятым для проектирования здания, руководствуясь данными графи 3 табл.I.

TK 1976

Пояснительная записка

1.420-12 Boinyck 0-2

SUCM 17-6

2. Габаритные схемы зданий, привязки колонн и наружных стен к разбивочным осям

Для зданий с сеткой колонн 9x6 с перекрытиями из плит, опирающихся на полки ригелей, предусматриваются следующие габаритные схемы:

- в) с количеством пролетов равным двум, высотой три и четыре этажа, с высотами этажей 3,6 м; 4,8 м и 6 м; высотой первого этажа 6 м и высотой последующих этажей 4,8 м;
- б) с количеством пролетов два и более, высотой три и четыре этажа с высотами этажей 3,6 м; 4,8 м и 6 м; высотой первого этажа 6 м и высотой последующих этажей 4,8 м, а также высотой первого этажа 7,2 м и высотой последующих этажей 6 м;
- в) с количеством пролетов равным двум с укрупненной сеткой колони верхнего этажа, оборудованного подвесным транспортом или без него высотой три и четыре этажа, с высотами этажей 4,8 м и 6 м и высотой верхнего этажа 7,2 м.

Высоты этажей приняты от пола одного этажа до пола другого этажа. В верхнем этаже с укрупненной сеткой колони высота принята от пола до низа стропильной конструкции. Толщина пола принята равной 100 мм. Расстояние между продольными или поперечными температурно-усадочными швами принимается по СНиП П-В.I-62^X.

Здания с одинаковой сеткой колонн во всех этажах решены с бестердачным покрытием из плит "многоэтажных" или "одноэтажных" зданий с плоской кровлей, с внутренним водостоком. Покрытие в зданиях с укрупненной сеткой колонн верхнего этажа решено в типовых конструкциях одноэтажных промышленных зданий.

Лестницы приняты с кирпичными стенами по серии ИИ20-8.

Привязка колони крайних рядов к продольным разбивочным осям — "нулевая".

Привлака внутренней грани торцевых стен зданий к геометрической оси колоне торцевых рам принята равной 230 мм.

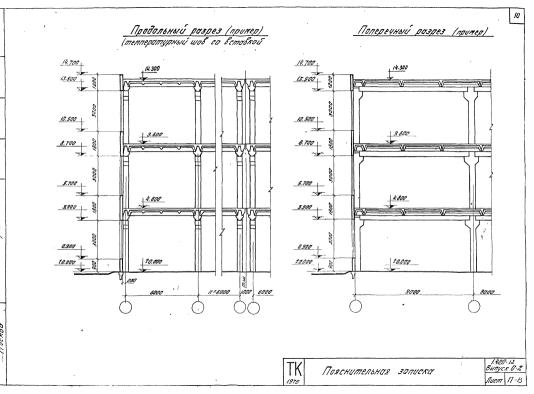
Привязка колоне рам у деформационных швов зданий с укрупненной сеткой колоне верхнего этажа принята со смещением геометрических осей колоне с поперечной разбивочной оси на 500 мм внутръ деформационного блока. Привязка колонн поперечных рам у деформационных швов зданий с одинаковой сеткой колонн во всех этажах принята в 2-х вариантах: с осевой привязкой колонн к поперечным разбивочным осям, с применением вставок равных 1000 мм; и без вставок, со смещением геометрических осей колонн с поперечной разбивочной оси на 500 мм внутрь деформационного блока.

На страницах IO ÷ 14 приведены примеры поперечных и продольных разрезов зданий с применением каркасов из конструкций упомянутых серий. На страницах IO, II даны разрезы каркасов со вставкой и без вставки у температурного шва для регулярной сетки
колонн при покрытии из плит многоэтажных зданий и на страницах
I2, I3 из плит одноэтажных зданий. На странице I4 приведены
разрезы при каркасах с укрупненной сеткой колонн в верхнем
этаже.

Привязка торцевых и рядовых колонн к поперечным разбивочным осям "осевая". 3. Конструктивное решение

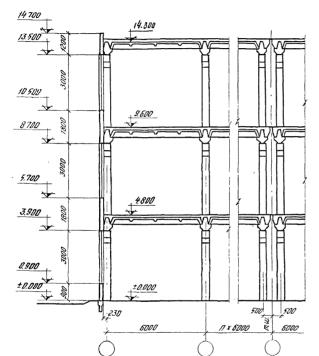
Пространственный каркас зданий решен по комбинированной схеме, представляющей сочетание рамной системы в поперечном направлении и связевой в продольном направлении.

Прочность и устойчивость каркаса в поперечном направлении обеспечивается поперечными рамами, которые образуются из сборных железобетонных колонн и ригелей и запроектированы со всеми жесткими узлами соприжений элементов за исключением узлов сопряжений стропильной конструкции с колоннами, которые при покрытии с применением типовых плит одноэтажных зданий (как для каркасов с одинаковой сеткой колонн во всех этажах, так и при укрупненной сетке колонн верхнего этажа 18х6 м), приняты шарнирными.

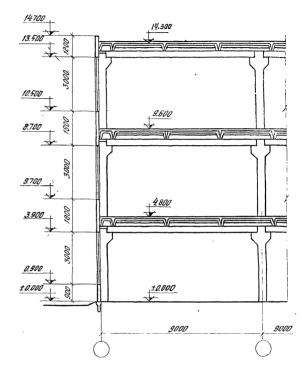

жесткое сопряжение ригеля с колонной осуществляется при помощи ванной сварки выпусков арматуры из колонны и ригеля, сварки закладных деталей ригеля и консоли колонны и последующего замоноличивания стыка.

Соединение опорной арматуры ригеля с колонной в стыках, расположенных в уровне покрытия, выполняется с помощью стыковых стержней. Стержни укладываются поверх оголовка колоны, привариваются ванной сваркой к торцам арматуры ригелей и затем электродуговой сваркой привариваются к оголовку колоны.

TK 1976

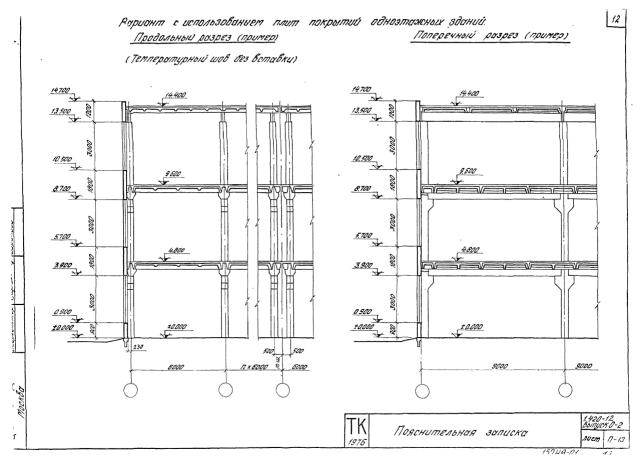

Пояснительноя зописка

1.420-12 Beinyck0-2 Nucm 17-7



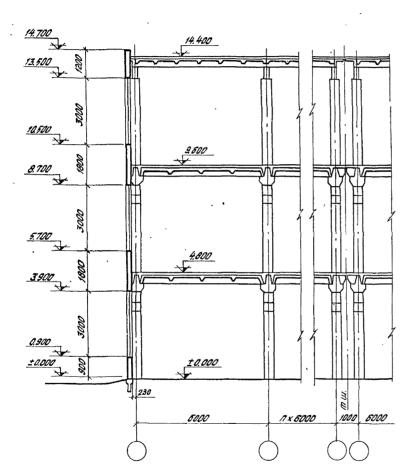
Продольный разрез (пример)

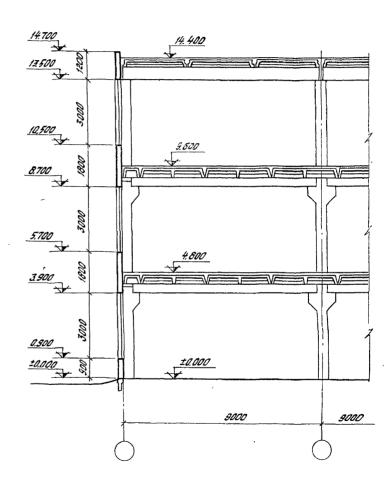
(температурный шов без встовки и осевая привязко торцевых колонн)


ЦНИНПРОМЗДЯНИЙ Москво

TK 1976

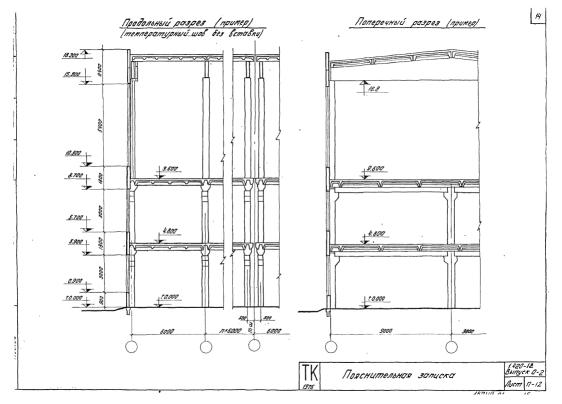
Пояснительная зиписка


1 420-12 Boinyer 0-2 Juem 17-9


Вариант с использованием плит покрытий одноэтожных зданий.
Продольный разрез (пример)
Поперечны

Поперечный разрез (притер)

(Температурный щов со вставхой)



<u> ИИИПРПМЗДЯНИЙ</u>

Пояснительная записка

1.420-12 Boinych 0-2 nucm 17-11

Ригели покрытия под плиты одноэтежных адений устанавливаются не торцы колони и привариваются к опорной закладной детали.

Стики колони расположены на высоте 1.8 м от отметки верха консоли, запроектированы жесткими и осуществляются путем соединения вертикальных выпусков продольных стержней колони ванной сваркой встык. (Абторское свидетельство $N^257/557$). Замоноличивание стыков производится после установки хомута в уровне ванной сварки и арматурных сеток.

Колонны зеделываются в стаканы фундаментов, заглубление колонн в стакан принято равным 600 мм. Отметка верха стакана фундамента — "0,15 м".

Прочность и устойчивость каркаса здания в продольном направлении решена в двух схемах конструктивного исполнения. Выбор конструктивной схемы определяется при конкретном проектировании.

Согласно одной схемы продольная устойчивость каркаса в период эксплуатации и монтажа обеспечивается постановкой вертикальных стальных связей по колоннам. Связи портального типа устанавливаются в одном шаге посередине каждого деформационного блока во всех этажах здания, кроме верхнего.

Примечание: В зданиях с укрупненной сеткой колони верхнего этажа, связи устанавливаются во всех этажах зданий, включая верхний этаж.

Связи, в вависимости от требований к степени жесткости дисков перекрытий, изложенных в разделе ІЗ пояснительной записки, могут устанавливаться либо разреженно, — по внутренним рядам колони через один или два ряда, либо по каждому ряду колони, вкимчая крайние ряды колоны.

- Примечания: I. В зданиях с высотами этажей 3,6 м связи устанавливаются только по внутренним рядам колонн разреженно или по каждому внутреннему ряду колонн.
 - В зданиях с укрупненной сеткой колони верхнего этажа свизи, при разреженной постановке устанавливаются только по наружным рядам колони.

Согласно другой схеме, продольная устойчивость каркаса зданий с одинаковой сеткой колонн во всех этажах в период эксплуатации и монтажа обеспечивается однопролетными рамами, образуемыми железобетонными колоннами и продольными ригелями, жестко соединенными с колоннами. Продольные ригели устанавливаются в уровне ригелей поперечных рам.

Продольные рамы устраиваются в каждом деформационном блоке по каждому внутреннему ряду колонн. Количество однопролетных рам в ряду определяется в зависимости от действующих вдоль здания горизонтальных сил.

При числе однопролетных продольных рем свыше одной рамы в продольном ряду колонн устраиваются через один шаг колонн.

В местах установки продольных ригелей межколонные плиты перекрытий не устанавливаются, а участок перекрытия, примыкающий к ригелю, заполняется монолитной плитой. Стык ригеля продольной рамы с колонной осуществляется при помощи ванной сварки выпусков арматуры из колонны и ригеля, сварки закладных деталей ригеля и колонны и последующего замоноличивания стыка.

Междуэтажные перекрытия запроектированы из плит трех типоразмеров по ширине: основной плиты шириной 3,0 и доборных плит шириной 1,5 м и 0,75 м. Доборные плиты шириной 0,75 м расположены только по наружным рядам колонн.

Межколонные плиты шириной 3,0 м, располагаемые вдоль здания по осям колони, привариваются в четырех точках к закладным деталям ригелей.

Доборные межколонные плиты шириной 0,75 м устанавливаются на стальные столики, привариваемые к закладным деталям колонн. Доборные плиты привариваются в четырех точках к столикам и закладным деталям ригелей (при сечении колонн 40х40 см).

В торцах межколонных плит внутренних продольных рядов колонн на уровне полки к плите приваривается упорный уголок, который перед сваркой должен быть плотно прижат одной стороной к колонне.

Остальные плиты перекрытий, расположенные между межколонных

TK 1976

Пояснительноя записка

1.420-12 BOINYCK 0-2 плит, привариваются в двух точках к закладным деталям ригелей, за исключением одной плиты в каждом пролете, этой плитой, как правило, может быть доборная плита шириной I,5 м, устанавливаемая у межколонной плиты шириной 0,75 м. Швы между плитами, а также между торцами плит, ригелями и колоннами должны быть тщательно заполнены бетоном марки не ниже 200 на мелком гравии или щебне.

Покрытия в зданиях, сохраняющих в верхнем этаже сетку колонн нижележащих этажей, решены эналогично перекрытиям, или с
применением типовых плит одноэтажных зданий, которые имеют ширину 3,0 и I,5 метра. На монтаже плиты покрытий одноэтажных зданий
привариваются к закланным деталям ригелей в четырех точках;
в стесненных условиях - в трех точках. Межколонные плиты, перекрывающие опоры ригелей, привариваются в двух местах со стороны
одного продольного ребра, опирающегося на ригели одного пролета.

Конструкции покрытия с применением плит покрытий одноэтажных зданий , как в случае верхнего этажа сохраняющего сетку колоне нижележащих этажей, так и с укрупненной сеткой колоне верхнего этажа (18х6 м) приняты из предварительно напряженых плит размером 3х6 м, а в случае недостаточной несущей способности этих плит для конкретных объектов или организации отверстий для пропуска коммуникаций из плит размером I,5х6,0 м. Стаканы для крепления крышных вентиляторов приняты по серии I.494-24 в.І. Балки покрытия при скатной кровле приняты по серии I.462-3. Детали сопряжения конструкций покрытия при скатной кровле приняты по типовым деталям для одноэтажных промышленных зданий, а для плоской кровли - по серии I.420-I2 вып.I4.

Стены могут решаться в двух вариантах: навесные и самонесущие. Стены навесные принимаются из панелей по серии 1.432-5 "Стеновые панели для производственных зданий с шагом колоня 6 м". При навесных панелях остекление ленточное панельное со стальными и деревянными переплетами.

В торцах зданий стеновые панели крепятся непосредственно к колоннам торцевых рам и к стойкам факверка поэтажной разрезки, опирающихся на ригели поперечных рам.

> 4. Сборные железобетонные изделия. 4.1. Колонны серии 1.420-12 Вып. 7.2.3

При высоте этажей 3,6 и разрезка колони нижнего яруса

дана в двух вариантах: трехэтажная и двухэтажная; при трехэтажной резке колонн нижнего яруса в 4-х этажных зданиях
верхняя колонна одноэтажной разрезки. При двухэтажной разрезке
колонн нижнего яруса в 3-х этажных зданиях верхняя колонна
одноэтажной разрезки, а в 4-х этажных - двухэтажной разрезки.

Для зданий с высотой этажей 4,8 м, а также с высотой первого этажа 6,0 м и высотой последующих этажей 4,8 м и для зданий с высотой этажей 6,0 м, а также с высотой первого этажа 7,2 м и высотой последующих этажей 6,0 м принята двухэтажная разрезка колонн нижних этажей.

Для 4-х этажных зданий разрезка колонн 3-го и 4-го этажай также двухэтажная, а колонны верхнего этажа трехэтажных зданий имеют одноэтажную разрезку.

Сечения колонн 400х400 и 600х400 мм.

Колонны изготавливаются из бетона марок 200, 300, 400, 500 и 600.

Для варианта использования в каркасах здания колонн из бетона M600 отдельно приводятся маркировочные схемы поперечных рам.

Использование в колоннах бетона М600-дает возможность в некоторых схемах применить колонны сечением 40х40 см вместо колонн сечением 40х60 см, или сократить расход продельной авматуры при тех же сечениях колонн.

Колонны верхних этажей при покрытии из типовых плит одноэтажных зданий отличаются отсутствием консолей для опирания ригелей покрытия.

Рабочая арматура из горячекатаной стали периодического про-

TK 1976

Пояснительная записка

1.420-12 BUNYCK 0.2 DUCM 17-14 филя класса А-Ш.

Колонны эрмируются пространственными каркасами, объединяющими плоские сварные каркасы, а также другие арматурные изделия и закладные детали.

В крайних колоннах и средних колоннах торцевых рам предусмотрени закладные детали для крепления панельных стен, панельных переплетов для ленточного остекления, крепления столиков для опирания доборных плит (только в крайних колоннах).

В крайних и средних колоннах связевых ячеек всех зданий за исключением зданий с высотами этажей 3,6 м предусмотрены также закладные детали для крепления вертикальных связей.

В средних колоннах, входящих в состав конструкции продольной рамы, предусмотрены закладные детали для образования жесткопо узла сопряжения продольного ригеля с колонной.

Ширина раскрытия трещин колони, предназначенных для эксплуатации в зданиях, как с неэгрессивной, так и слабо-и среднеагрессивной средой — не более 0,2 мм. Предел огнестойкости колони, армированных стержневой арматурой класса А-Ш в соответствии с указаниями СНиП П-А,5-70 равен 4 часам.

Маркировочные схемы колонн поперечных и продольных рам приведены в настоящем альбоме применительно к каждой унифицированной схеме.

4.2. Ригели поперечных рам серий ИИ23-2/70, I-420-I2 выпуски 7 и 9.

Ригели приняты трех размеров по длине 7980, 8280 и 8480 мм. Высота ригелей 800 мм, ширина в уровне полок для опирания плит равна 650 мм. В ригелях, устанавливаемых в торце зданий, полка для опирания плит предусмотрена только с одной стороны ригеля.

У ригелей примикающих к лестичным клеткам в одной из полок сделан вырез для пропуска стен лестничной клетки.

Величина сосредоточенной местной нагрузки, которую можно передать на полку ригеля при условии приложения нагрузки через закладную деталь, предназначенную для крепления плит перекрытий, не должна превышать 13 т.

<u>Примечание:</u> В случае необходимости передачи на полку сосредоточенной нагрузки свыше ІЗ т проверку

прочности полки ригеля можно провести, используя материалы альбома ИИ20-5.

Ригели, используемые в торцевых рамах и рамах деформационных швов, рассчитаны на изгиб с кручением.

Ригели разработаны с напрягаемой арматурой. В качестве рабочей арматуры использована стержневая арматура периодического профиля класса А-IУ и А-Шв. Марка бетона 300-400. Ригели армируются пространственными каркасами, объединяющими плоские каркасы, а также другие арматурные изделия и закладные детали.

В ригелях предусмотрены закладные детали для опирания и крепления плит перекрытия, а также закладные детали для крепления ригелей к консолям колоны. В ригелях торцевых рам предусистрены закладные детали для крепления стоек фактерка.

Ширина раскрытия трещин ригелей, предназначенных для эксплуатации в эданиях с неагрессивной средой принята не более 0,3 мм; а предназначенных для эксплуатации в слабо-и средне-агрессивных средах принята не более 0,2 мм.

Предел огнестойкости ригелей, армированных стержневой арматурой класса А-IV и А-Ш в соответствии с указаниями СНиП П-А.5-70 равен 2 часам.

Ригели покрытия серии I.420-I2 выпуск 9 имеют длину 8960 мм, прямоугольное сечение 300х600 мм и изготавливаются из бетона марки 300 и 400, армированы пространственными каркасами объединяющими плоские каркасы, другие арматурные изделия и закладные детали. Рабочая арматура предварительно напряженная из стержней периодического профиля классов А-Шв и А-IУ. Закладные детали предвазначены для крепления ригелей к оголовникам колони, для крепления плит покрытия и стоек фахверка. Ширина раскрытия трещин 0,2 мм позволяет применять их в условиях среднеагрессивной газовой среды.

Напрягаемая арматура класса А-Ше применяется только в случае отсутствия арматуры класса А-ІУ.

Маркировочные схемы ригелей поперечных рам (в том числе с применением типовых плит одноэтажных зданий) даны в настоящем

TK 1976

Пояснительная записка

1.420-12 861740x0-2

SUCM 17

альбоме применительно к каждой унифицированной габаритной схеме.

4.3. Ригели продольных рам

Ригели продольных рам серии ИИ23-I/70 по внешнему виду отличаются от ригелей поперечных рам подрезкой у торцов. При соответствующем вкладыше опалубочные формы ригелей поперечных рам могут быть использованы для изготовления ригелей продольных рам.

Длина продольного ригеля - 5480 мм. В качестве рабочей арматуры использована стержневая арматура периодического профиля, класс А-Ш. Марка бетона - 200. Ригели армируются пространственными каркасами, объединяющими плоские каркасы и другие арматурные изделия и закладные петали.

В ригелях предусмотрены закладные детали для крепления ри-

Ширина раскрытия трещин ригелей, предназначенных для эксплуатации в зданиях как с неагрессивной, так и в слабо и среднеагрессивной среде принята не более 0,2 мм.

Предел огнестойкости ригелей в соответствии с указаниями СНиП Π -A.5-70 равен 2 часам.

Маркировочные схемы продольных ригелей даны в настоящем альбоме применительно к каждой унифицированной габаритной схеме.

4.4. Плиты

Плиты по ширяне приняты трех типоразмеров: основная плита шириной 3,0 м по серхи ИИ24-8 и доборные I,5 м и 0,75 м. по серии ИИ24-9. Плина плит 5,55 м.и 5,05 м.

Плити, укладываемые у деформационных швов при привлзке колонн на 500 мм от поперечной разбивочной оси внутрь зданий, имеют длину равную 5,05 м. Высота плит 400 мм, толщина полки 50 мм. Плити, укладываемые по осям колони, используются в качестве распорок, передающих горизонтальные усилия на связевой блок.

Продольные ребра плит имеют пази для обеспечения совместной работы соседних плит после замоноличивания.

Плиты шириной 3,0 и I,5 м изготовляются из бетона марок 200, 250, 300, 350, 400, 450 и 500. В качестве рабочей арматуры использована стержневая арматура периодического профиля классов А-Ш. А-Шв. А-Гу. А-У, Ат-У, Ат-У, и пряди П-7.

Доборяне плиты шириной 0,75 м выполняются из бетона марок 200 и 300 и арматуры класса A-II и A-II без предварительного напряжения.

Плиты имеют закладные детали для крепления их к ригелям перекрытий.

Для установки на покрытии дефлекторов, зонтов или крышных вентиляторов используются доборные плиты с отверстиями шириной 1,5 м с предварительно напряженной арматурой по серли ИИ24-9.

Для пропуска вертикальных коммуникаций через перекрытия в альбоме ИИ24-9 даны примеры устройства в плитах прямоугольных отверстий.

В плитах по сериям ИИ24-8 и ИИ24-9 ширина раскрытия нормальных трещин не превышает 0,3; 0,2 или 0,1 см, а наклонных 0,3 или 0,2 мм в зависимости от класса стали рабочей арматуры и категории трещиностойкости, что принимается согласно указаниям приведенным в рабочих чертежах плит.

В плитах шириной 0,75 м ширина раскрытия трещин нормальных и наклонных принята до 0,2 мм.

Предел отнестойкости плит равен 0,75 часа.

Стальные столики предназначенные для опирания доборных плит, должны быть защищены от огня бетонированием или штукатуркой по сетке.

Типовые плиты покрытия одноэтежных производственных здений приняты по ГОСТ 22701.0-77‡ГОСТ 22701.5-77 и по серии 1.465-7 вып,0, 3,4. По ширине имеются плиты двух типоразмеров: 2980 мм и 1480 мм. Длина плит 5970 мм; высота ребер 300 мм; топщина плиты 30 м. Марки бетона М200, М250, М300, М350, М400. Плиты имеют гарианты по классам арматуры применяемой в продольных ребрах: стержневой А-Ша; А-Гу; А-у; Ат-Гу; Ат-у и Ат-УІ, проволокой Вр-П и прядями. Вид напрягаемой арматуры выбирается с учетом условий применения плит покрытий.

T	K	
19	76	1

MORCHUTEABHOR SOMUCKO

1.420-12 86174CK 0-2 Плиты покрытий могут быть применены в зданиях с неагрессивной . слабо и среднеагрессивной газовыми средами.

Для установки на покрытии дефлекторов, зонтов и воздуховодов с крышными вентиляторами применяются плиты покрытий с отверстиями по ГОСТ 2270I.2-77 по серии I.465-7 вып.З и стаканы по серии I.494-24 вып.І

Плити покрытий имеют закладные детали для крепления парапет-

Рабочие марки илит покрытий устанавливаются по фактической для района строительства снеговой нагрузке от конструкций кровли и подвесного транспорта, а также с учетом числа и размещения в плитах закладных деталей для крепления к плитам парапетных стеновых панелей.

Маркировочные схемы с примерами раскладки плит перекрытий и покрытий даны на листах 42, 43, 68, 69.

5. Стальные конструкции

5.1. Вертикальные стальные связи

Связи запроектированы одноветвевыми портального типа. Сечение связей подобрано из равнобоких уголков.

На рис. I (стр. 27) приведена схема решетки связей принятая:

- для зданий с высотой этажей 3,6 м;

- для зданий с высотой этажей 4,8 м, как в случае постановки связей по каждому продольному ряду колонн, так и в случае разреженной постановки связей:
- для зданий с высотами этажей 6,0 и 7,2 м при постановке связей в каждом продольном ряду колонн, в том числе в нижнем ярусе верхних этажей с укрупненной сеткой колонн.

На рис.2(стр. 27) приведена схема решетки связей, принятая для зданий с высотами этажей 6,0 м и 7,2 м (в I этаже) при разреженной постановке связей, в том числе в верхнем ярусе верхних этажей с укрупненной сеткой колони.

В производственных зданиях, в которых не могут быть допущены

открытые стальные конструкции, стальные связи должны быть защищены от отня штукатуркой по сетке или облицовкой из бетонных плиток толщиной не менее 2,5 см в соответствии с требованиями СНиП Π_{-} М. 2–72.

Маркировочные схемы связей приведены в настоящем альбоме для каждой унифицированной габаритной схемы для двух вариантов размещения: разреженно через I-2 продольных ряда колони и по каждому продольному ряду.

5.2. Фахверк торцевых стен

Фахверк торцевых стен запроектирован под навесные панельные стены.

Факверк запроектирован составного сечения из двух швеллеров.

В зданиях с одинаковой сеткой колонн фахверковые стойки опираются на ригели поперечных рам и раскрепляются в верхней части шарнирным креплением, обеспечивающим независимое друг от друга перемещение междуэтежного перекрытия и торцевой стены.

В зданиях с укрупненной сеткой колони фахверковые стойки опираются на ригели торцевой рамы и крепятся к балке покрытия в уровне верхней полки.

Вертикальная нагрузка, действующая на стойки, передается на ригели торцевой рамы, а горизонтальная нагрузка передается на каркас здания.

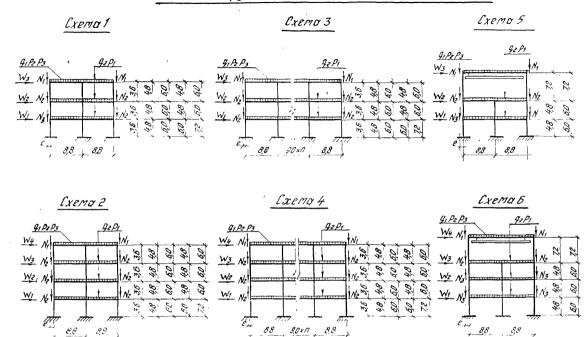
6. Нагрузки на каркасы зданий

Конструкции многоэтажных промаданий рассчитани на воздействие постоянных, кратковременных и временных длительных нагрузок.

Постоянными нагрузками являттся: собственный вес железобетонных конструкций междуэтажных перекрытий и покрытия с учетом задивки швов; собственный вес конструкции кровли и пола, собственный вес наружных ограждающих конструкций, а также собственный вес колонн.

TK 1976

Moschutenbhas sanucka


1.420 - 12 BUTTYCK 0.2

Дополнительное

MORCHUMENGHOR BUNUCKO.

1.420-12 BOINYER 0-2 Sucm 17-18

Гхета загружений поперечных рат зданий.

1. e-эксцентривитет сил N_l , N_2 и N_3 относительно осей коложи при сечении колонны 400×400 e=0.35м, при сечении 500×400 e=0.35м. 2. Значения нагрузок даны в таблицах приведенных на страницах 22,23.

ЦНИИПРОГЛЗДЯНИЙ Маскба

MORCHUMENDHOA - BONYEKO

1,420-12 Boinyck 0-2

Росчетные значения вертикальных нагрузок на поперечные рамы от веса навесных панельных стен

TOBAUUD 3

B 6100 मा 61 अम्बद्धार्थ	Tun parisi	N ₁ KeC	N ₂ KeC	N3 xec
3,6	Рядовая	3890	7780	
ijΰ	Topyeban u y m.w.	2330	4570	
4.8	Рядовия	3890	10400	
,,,	Торцевая и у т.щ.	2330	6250	
60	Рядовая	3890	13000	
4,0	Торцевоя цут.ш.	2330	7800	
6.0;48	Рядовая	3890	10400	~
40,40	Торцевия и у т.ш.	2330	6250	
72.50	Рядовая .	3890	13000	-
7,2;6,0	Торцевая и у т.ш.	2330	7800	1
48;48;72	Рядовая	6620	18550	10400
70,70,72	Торцевая и у т.ш.	3970	9935	6250
50 50 70	Рядовия	8820	16550	13000
5,0; 5,0; 7,2	Торцевоя и у т ш.	3970	2935	7800

Расчетные значения вертикальных нагрузок HO MONEPEYHBIE POMBI

Homepu			VIULUUSNU NEUNN		Снеговая	
oxem sorpy	TUP DOMBI	HO NOK,DBIMUR	HO NEPEKPBITUE	HORPYSKA HA	HOZPYSKO HO NOKOBINUE	गामक्रमुटगाप्रगा गामक्रमुखामा
HCEHUÚ	700.70	91	92	nepenportue Pamejram	R Kayn.M	l '
	Рядовия	5100	4500	3500 7200 10800	1250	3000
1-4	Topyeban u y m.w.	3060	2760	2160 4320 6480	756	1800
5-6	PAdobas	3200	4600	3600 7200 10800	1250	1290
	Topyeban u y m.w.	1920	2760	2160 4320 6480	756	774

Примечания:

1. Закладные детали колони для крепления столиков под панельные стены запроектированы на расчетную вертикальную нагрузку 9т. 2. В схемах 1-4 выхота парапета принята равной 400 mm

(om bepag naum nokobimua). В схемах 5-6 расстояние от низа стропилоной

конструкции до верхо стены принято 2,2 т. 3. Схеты зогружений доны на стр. 21.

4. Принятое сокращение "ти!"- тетпературный шов.

5. Значения нагрузак от подвесного транепорта и снеговой нагрузки даны для основного сочетания, при дополнительным сочетонии величин нагрузок, указанные в таблице 4 умножинтея на коэффициент К=0,9.

6. Значение № и Л, указаны в таблице 3 для глужих стен

(SE3 OKDHH612 APDEMOS)

-	TK	
	1975	L

Пояснительноя записка

1420-12 BOITUCKO-2

157110 01

	Pacs	IEMHBIR	Be.	mpobbi	e HO	epy3KU	HO
8ысоты эт ож ей	Yurao smoneú	Tun	Berpabab parian CCCP	W, xec	W₂ ĸec	W₃ xec	W4 KEC
	3	Рядовая	<u>I</u>	1180	1270	1340	
3,6	4	Рядовая	N N	1860 . 1180	1990	1300	1480
	ļ	/ //0004	<i>IV</i>	1860	1990 1740	2060	2320
48	3	Рядовия	<u>I</u>	1600	2730	2580	
70	4	Рядовая	1	1500	1740	1920	1950
-	├			2520 2050	2730	3020 2140	<i>3060</i>
5,0	3	Рядовая	<u>I</u>	3/90	3590	3360	
	4	Рядобоя	II IV	2050 3190	2300 3590	2560 4180	2440 3840
	3	Рядовия	I	1810	1780	1790	
5,0	_	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_ZV	2840	2780	2810	,

1810

1780

2780

1990

3120

1990

3/40

поперечных	ממסס

43161

8काटवामका भगवञ्चलको		Tun	Berpoboû payan CCCP	W, Nec	W2 KEC	W₃ ĸec	W4 KEC
	3	Рядовая		2240	2340	1920	
7,2 6,0	4	Рядовся	N N	3520 2240	3880 2340	3000 2750	2520
			N	3520	3660	4300	3960
4,8 4,8	3	Рядовия		1500 2520	2320 3640	2950 4530	
7,2	4	4	11	1600	1740	2570	3300
			<u>I</u> Y	2520	2730	3960	5060
6,0	3	<i>Рядовия</i>	<u>II</u>	3190	2620	3120 4900	
6,0 7,2	4 Рядовая	I	2050	2300	3360	3540	
		4 1400009	N	3190	3590	4800	5530

Πουπενομυя:

! Значения ветровых нагрузак определены для основного 1. Σπονετία σεπηρουδικ ποριματί πορεσειστώ των οθτουτίσει ενεπουτίσε το ευτηρουδικ το μετιστά που πορεσειστά [2. Που οοποιαμιπετότιση εύνεποικου το εριματίσε που πορεσιματί [2. Επιστότε δεπροτότε ποτοματίσε το το ποι ποτο ποτο ποι με ποργούδια τους επίσκατε μοτή για περιστήμετα μέρο 3 ενεποί 3οπριστεμού τοικοί πο cmp 21.

Пояснительноя 30NUCKO 1.420-12 Boinyek 0-2 17-21 Значения коэффициентов используемых для определения усилий от ветровых нагрузок приложенных поярусно к узлам элементов продольного каркаса: вертикальных связей и продольных рам

Вариант решения	Количество		пролетов попере		чной рамы	
продольного каркаса	2	3	4	5	6	7
Вертикальные связи при разреженной постановке	3,0	2, 25	3,0	, 2,5	3,0	
Вертикальные связи при постановке по каждому ряду	1,0	1,125	1,2	1, 25	1,29	
Продольные рамы	3,0	2, 25	2,0.	1,875	1,8	_

жения коэффициентов, приведенных в настоящей гадлице и эначений ветровых нагрузок на узлы лоперечных рам, приведенных втадлице 5
2 Эначения коэффициентов при разреженной постановке связей отвечают принятой в работе схеме размещения связей в плане (см. л. 78 ÷ 83).
3 Эначения коэффициентов при установке продольных рам соответствует постановке одной рамы в каждом среднем ряду. (см. л. 72 ÷ 74).
4. Для зданий с укрупненной сеткой колонн верхнего этажа коэффициенты принимаются при разреженной постановке связей—1,5 при постановке связей по каждому ряду - для верхнего этажа—1,5 для остальных 1.

І. Для зданий с одинаковой сеткой колонн во всех этажах величина ветровой нагрузки, приложенной в каждом ярусе к узлам элементов продольного каркаса: вергикальных связей и продольных рам определяется путем перемно-

T1

Собственный вес перегородок условно отвесен к постоянным нагрузкам.

Кратковременными нагрузками являются: ветровая; от подвесного транспорта (на покрытие) и снеговая.

Ветровая нагрузка принята по І-ІУ географическим районам СССР. Снеговая нагрузка принята по ІУ району СССР.

За временную длительную нагрузку принята эквивалентная, равномерно распределенная нагрузка на перекрытие, соответствующая таким возможным видам нагрузок, как вес стационарного оборудования, вес жидкостей и твердых тел, заполняющих оборудование, вес . волениях материалов.

Вес людей, деталей и ремонтных материалов в зонах обслуживания оборудования условно отнесен к временным длительным нагруз-KaM.

Величины вертикальных нормативных нагрузок на покрытие и междуэтажные перекрытия и их расчетные значения для основного и дополнительного сочетаний приведены в таблице 2.

Схемы и величины нагрузок на поперечные и продольные каркасы даны на страницах 21÷24.

Расчетные нагрузки на ригели покрытия приняты по "Указаниям по применению унифицированных нагрузок при проектировании типовых железобетонных конструкций для сборных перекрытий и покрытий эдений". (СН 382-67) и составляют (без учета собственного веса ригелей) 4000, 5200, 7200 кгс/м2.

В кочестве расчетных усилий, для сечений элементов рам выбраны наихупшие из леух випов сочетаний нагрузок; основного и дополнительного.

В основное сочетание входят следующие нагрузки: постоянные, временная длительная и кратковременная ветровая. Конструкции верхнего этажа, кроме того, проверялись на основное сочетание, в которое в качестве кратковременной нагрузки включается эквивалентная нагрузка от подвесного транспорта или снеговая нагрузка.

В дополнительное сочетание нагрузок входят: постоянные, временная длительная, а также кратковременные нагрузки - ветровая, снеговая и от подвесного транспорта. Кратковременные нагрузки вводились в расчет с коэффициентом 0,9. При определении ширины раскрытия трещин величина ветровой нагрузки принималась в размере

UNUNDERGEANUE Mossiba

30% нормированного значения скоростного напора в соответствии с СН 262-67 ("Указания по проектированию антикоррозийной защиты строительных конструкций").

7. Основные расчетные положения.

7.1. Расчет поперечных рам каркаса на эксплуатационные нагрузки

Усилия в элементах поперечных рам каркаса определены в результате статического расчета рам на различные сочетания Вертикальных и горизонтальных (ветровых) нагрузок. При расчете поперечных рам все узлы сопряжения колони и ригелей причимались жесткими. 38 исключением узлов сопряжения колонн со стролудьеся конструкцией в верхнем этаже зданий с регулярной сеткой колови (при применении в покрытии типовых плит одноэтажных зданий) и с укрупненной сеткой колони 18х6 м. которые принимались шарнирными.

При расчете рам модуль упругости всех элементов принят ностоянным в предположении упругой работы элементов рам.

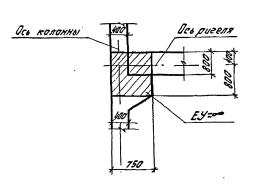
Расчет рам поперечного каркаса виполняется с учетом повышенной жесткости в зоне опирания ригелей на консоли колонн. Участки колонн и ригелей, примыкающие к узлам, при расчете принимались бесконечно жесткими. Размеры таких участков приведены на странице 26.

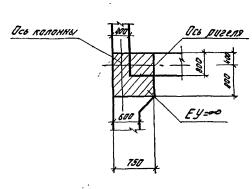
При статическом расчете рам момент инерции ригелей определялся без учета плит перекрытий.

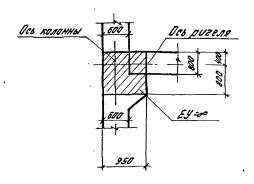
Заделка колони в стаканах фундаментов принята в уровне верха стакана на отметке - 0.15 м.

Расчетные усилия в элементах поперечных рам определены в сечениях, проходящих по граням жестких участков.

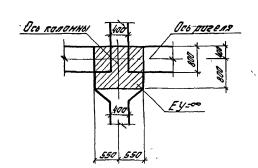
Наибольшая величина смещений поперечной рамы, равная 🙃 имеет место для скем с применением в покрытии плит одноэтажных зданий.

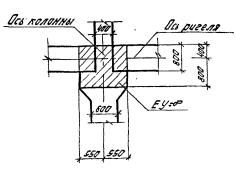

7.2. Расчет продольного каркаса, решенного с применением вертикальных стальных связей.

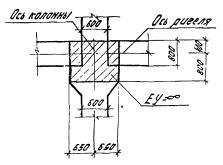

При расчете продольного каркаса принято, что при установке


Поденительная записка

BUNYCK 0-2


Участки повышенной жесткости в местах сопряжения ригелей с крайними колоннами





Учостки повышенной жесткости в местах сопряжения ригелей со средними колоннами.

Заштрихованные участки узлов в расчете рам приняты бесконечно жесткими.

Пояснительная записка

1.420-12 BUMYER 0-2

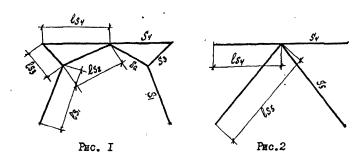
Nucm 11-24

связей по всем продольным радам колонн, ветровая нагрузка действующая на торцевые стены, передается на вертикальные связевые устои в основном через распорки в виде межколонных плит перекрытий в уровне центра тяжести плит и распределяется поровну между всеми связевыми устоями.

При разреженной постановке связей принято, что ветровые нагрузки передаются на связевые устои также и через жесткие в своей плоскости диски перекрытий, обеспечивающие равномерное распределение горизонтальной нагрузки между связевыми устоями.

При определении усилий в элементах стальных связей, связевая система рассматривалась в виде консольной фермы, образованной связевыми колоннами и вертикальными связями, без учета неразрезности связевых колонн.

При расчете связевых колонн учтены усилия, возникающие вследствие прогиба связевой фермы. Кроме того, учтены усилия от эксцентрического креплении связей к колоннам. В этом случае связевые колонны рассматривались как неразрезные балки, защемленные в фундаменте и шарнирно опертые в уровне перекрытий.


В схемах, в которых не предусмотрена постановка связей в верхнем этаже, стойки верхнего этажа рассматривались как консольные.

Стальные вертикальные связи запроектированы скаторастянутыми.

При расчете скатых элементов связей расчетные длины элементов принимались равными:

- при продольном изгибе в плоскости связи расстоянию между центрами узлов;
- при продольном изгибе из плоскости связи:
- а) для раскосов $S, \#S_{\varrho} \ell_0 = \ell_{S_1} + \ell_{S_2};$
- б) для раскоса $S_5 l_0 = l_{S_5}$;
- в) для подкоса $S_3 \ell_o = \ell_{S_3}$;
- г) для распорки. $S_4 l_0 = l_1 \delta l_{S_4}$.

Распорка из плоскости связи рассчитывалась как сжато-изо-гнутый элемент на действие сжимающей силы от ветровой нагрузки и условной поперечной силы $Q=20\,F$ в кгс (F — площадь сечения раскоса в см2, приложенной посередине пролета распорки.)

7.3. Расчет продольного каркаса, решенного с применением однопролетных продольных рем.

Продольные однопролетные рамы, обеспечивающие прочность и устойчивость здания в продольном направлении, устанавливаются по каждому внутреннему ряду колонн.

Количество однопролетных рам, устанавливаемых в каждом ряду колони, определялось из условия прочности элементов каркаса (при расчетных значениях нагрузок).

При этом величина отклонения здания в уровне покрытия принималась равной не более $\frac{I}{TNI}$ висоти здания.

При применении в покрытии типовых плит одноэтажных зданий для четырех и пятиэтажных схем допускались отклонения $\frac{\text{H}_3q}{500}$.

При расчете принято, что ветровые нагрузки передаются на продольные рамы через распорки в виде межколонных плит перекрытий и покрытия, а также через жесткие в своей плоскости диски перекрытия и распределяются поровну между всеми рамами.

Все узлы сопражения колони и ригелей при расчете продольных рам принимались жесткими, за исключением узла сопражения колони с конструкцией покрытия трех и четырех этажных зданий с висотой этажей 3,6 м, а также трехэтажных зданий с висотой этажей 4,8 м и в каркасах с применением в покрытии плит одноэтажных зданий, которые принимались шарнирными. В этих случаях продольный гигель в уровне покрытия не устанавливается.

При расчете продольного каркаса учтена работа коловя, не вхо-

TK	Пояснительная записка	1.420-12 BOINYCK 0-2		
1976		AUCT	11-25	

дящих в состав однопролетных рам, расположенных в пределах блока здания длиной 36 м.

Величина ветровой нагрузки на одну продольную раму определялась с учетом числа однопролетных рам, устанавливаемых в продольном ряду колонн каждого деформационного блока.

При расчете ригелей продольных рам учитывалась также вертикальная нагрузка с продольной полосы шириной I,5 м.

Расчетные усилия в ригелях определялись по грани колонны.

8. Расчет каркасов на нагрузки, действующие в период возведения здания без немедленного замоноличивания узлов.

Каркаси зданий в период возведения рассчитани на сочетания следующих нагрузок: нагрузки от собственного веса конструкций, от веса навесных панелей стен, ветровой нагрузки, а также монтажной расчетной нагрузки равной 250 кгс/м2.

Величина коэффициента перегрузки на кратковременние нагрузки снижена на 20% в соответствии с пунктом I.I3 главы СНиП Π_{7} В. Π_{7} В. Π_{7} В.

Расчетная схема поперечного каркаса в период возведения принята в виде поперечных рам, без учета участков повышенной жесткости.

После сварки опорной арматуры рагелей с выпусками арматуры из колонн, а также сварки закладних деталей ригелей и консолей колонн в узлах, воспринимающих изгибающие моменты отрицательного знака, усилия растяжения воспринимаются опорной арматурой ригеля, а сжатие через сварные швы и закладные детали воспринимается бетоном и арматурой ригеля и консоли колоны.

В узлах, воспринимающих изгибающие моменты положительного знака, усилия растяжения через сварные швы и закладные детали воспринимаются арматурой ригеля и консоли колонн, а усилия сжатия опорной арматурой ригеля.

Несущая способность незамоноличенного опорного узла определена, исходя из максимального усилия, воспринамаемого сварным соединением закладных деталей консоли колонн и ригеля. Прочность и устойчивость каркаса в продольном направлении в период монтажа обеспечивается постановкой постоянных вертикальных связей или устройством продольных рам (без замоволиченных узлов). Расчетная схема продольного каркаса при расчете на монтажные нагрузки принята такой же, что и при воздействии эксплуатациронных нагрузок.

В каркасах зданий, для которых не предусмотрени постоянные вертикальные связи или рамы в продольном направлении, в период монтака должны устанавливаться временные инвентарные связи.

Насущая способность незамоноличенного сопряжения ригеля с колонной вичисляется по формуле: $M \leqslant 0.7 h_{uu} \ell_{uu} R_y^{cb} (h_c - \alpha')$ при этом $0.7 h_{uu} \ell_{uu} R_y^{cb} \geqslant F_c R_c$ где: M — расчетный изгибающий момент по грани колонн;

hu, lu- соответственно висота и суммарная длина сварных швов,

соединенных закладными деталями ригеля и колонн в нижней зоне ригеля;

 \mathcal{R}_{y}^{cB} расчетное сопротивление утловчх швов;

//_о - расстояние от низа ригеля до центра тяжести выпусков арматуры;

Q' - расстояние от низа ригеля до центра тяжести сварных швов;

 F_{cf} - площадь сечения випусков арматури;

 $\mathcal{R}_{\mathbf{d}^{\tau}}$ расчетное сопротивление выпусков арматуры.

При изгибакщих моментах, вызывающих сжатие опорной арматуры, стержни арматуры проверени на устойчивость.

Свободная длина сматых стержней опорной аумятуры при расчете их с учетом продольного изгиба принята равной $0.5\mathcal{L}_{\star}$

где ℓ - расстояние мажду колонной и граные рягеля, из которой выпущены стикуемые оперные стержии.

Устойчивость стержней проверяется по формуле:

$$R_{a} \rightarrow \frac{M}{m \mathcal{L}_{a} \cdot F_{a} \mathcal{G}}$$
;

|TK| |1976|

Пояснительная записка

1.420-12 BUNYCK 0-2 AUCT 17-26

15749-01

где М - расчетный момент по грани колонны;

- дет расстояние между центрами тяжести выпусков арматуры и сварных швов, соединяющих закладные детали ригеля и колонны;
- У коэффициент продольного изгиба, определенний по СНиП II-В.3-72, в зависимости от гибкости одного стержня и марки стали;
- т коэффициент условий работы, равный 0,8;
- F_d площадь сечения выпусков арматуры.

При незамоноличенных стиках проверена прочность наглонных сечений на участке колонны в зоне между отметками низа ригеля и выпусков арматуры на действие поперечной силы, определяемой по формуле:

$$Q = \frac{M_1 + M_2}{\mathcal{Z}}$$

где: M₂, M₂ - изгибающие моменты в колоннах: на уровнях верха консоли и стыкуемых выпусков;

🟅 - расстояние от низа ригеля до центра тяжести выпусков.

9. Расчет элементов каркаса

Расчет железобетонных элементов произведен по СНиП II-В. I-62^ж "Бетонные и железобетонные конструкции. Нормы проектирования".

Расчет стальных конструкций произведен по СНиП II-В.3-72 "Стальные конструкции. Нормы проектирования".

9.1. Расчет колонн

В соответствии с воспринимаемыми нагрузками, колонни подразделяются на связевие, рядовие, торцевие и колонни у температурних швов.

К связевым колоннам относятся колонни, входящие в состав связевых устоев, образованных с применением вертикальных связей.

Связевие колонни и колонни продольных рам рассчитани на

две комбинации воздействия нагрузок: на горизонтальные и вертикальные нагрузки, действующие в плоскости поперечных рам; а также на вертикальные нагрузки, действующие в плоскости поперечных рам, и горизонтальные нагрузки, действующие из плоскости поперечных рам.

Усилия от нагрузок; действующих из плоскости поперечных рам, определены при расчете каркаса здания в продольном направлении при обоих схемах конструктивного решения: с использованием вертикальных связей и продольных рам.

При расчете связевых колони, учитывались дополнительные усилия от смещения продольного каркаса здания, от действия горизонтальных ветровых нагрузок, а также от эксцентричного крепления связей, определяемие, как для неразрезной балия.

Рядовые и торцевые колонны рассчитаны на усилия от нагрузок, действующих в плоскости поперечных рам, а также на усилия из плоскости рам, определяемые величией смещения продольного каркаса, решенного с применением вертикальных связей, или продольных рам.

Торцевые колонни, кроме того, рассчитаны на усилия от кручения ригелей, вызванного односторонним приложением вертикальных нагрузок.

Значения усилий (изгибающих моментов и нормальных сил) в расчетных сечениях колонн определялись из условия наиболее невытодного сочетания нагрузок.

Величина нормальной силы в колоннах снижена за счет введения коэффициента 0,8 к величине временной длительной нагрузки для перекрытий, расположенных над колоннами рассматриваемого этажа, за исключением перекрытия над данным этажом.

Расчетная длина колони в плоскости поперечных рам принята равной расстоянию между жесткими участками колони.

Расчетная длина колони из плоскости рам принята равной высоте этажа, за исключением колони первого этажа, для которых расчетная длина принята равной 0,8 от высоты этажа.

Расчетная длина колони верхних этажей при применении плит

TK 1976

Пояснительная записка

1.420-12 Boinyck 0-2 одноэтажных зданий (как для случая с одинаковой сеткой колонн во всех этажах, так и с укрупненной сеткой колонн в верхнем этаже) принята как пля колонн опноэтажных впаний.

Несущая способность консолей колонн установлена с учетом жесткой конструкции стыка рителя с килонной в соответствии с положениями п.7.43 СНиП Π -B. Π -62 $^{\rm X}$.

9.2. Расчет ригелей.

Ригели рассчитаны как элементы рам с жесткими узлами. Расчетные усилия в опорных сечениях ригелей поперечных рам опредепены для сечений, проходящих по границам жестких участков, в для ригелей продольных рам для сечений, проходящих по граням колонн. Размеры жестких участков приведены на стр.26.

Подбор сечения опорной и пролетной арматуры произведен с учетом перераспределения усилий в ригеле, в соответствии с "Ру-ководством по расчету статически неопределимых железобетонных конструкций" (Москва, Стрэйиздат 1975 г.).

Сечение опорной арматуры проверено, а высота сварных швов назначена с учетом усилий, возникающих в раме каркаса в период монтажа конструкций без одновраменного замоноличивания стыков.

Ригели рассчитаны по прочности, деформациям и раскрытию тращин. Поперечные ригели используемые в торцевых рамах и у деформационных швов, рассчитаны на изгиб с кручением.

Ригели покрытия (выпуск 9) рассчитаны как однопролетные балки с шарнирным опиранием.

9.3. Расчет плит

Плиты перекрытий рассчитаны на следующие нагрузки: собственный вес плит с учетом заливки швов, веса пола и перегородок, а также на временные длительные нагрузки. Плиты применяемые в покрытии рассчитаны на собственный вес плит с учетом заливки швов, вес конструкции кровли и снеговую нагрузку. Снеговая нагрузка на плиты по серии ИИ-24 принята для ІУ географического района СССР; на плиты по серии I.465-7 на IOO-600 кгс/м2.

Плиты рассчитаны как разрезные. Плиты, запроектированные под нормативную временную длительную нагрузку 2500 кгс/м2, дополнительно рассчитаны на действие нагрузки от напольного транспорта типа погрузчика 4004 грузоподъемностью 750 кг при толщине комструкции пола в пределах 50-100 мм.

Наибольшая нормативная нагрузка от давления одного колеса принята равной II90 кгс при расстоянии между колесами 760 мм.

Нагрузка от напольного транспорта и равномерно распределенная временная длительная нагрузка принимаются действующихи разновременно.

Примечание: Применение указанного типа погрузчика или аналогичного ему по нагрузке для плит, рассчитенных под временные длительные нагрузки 1000-2000 кгс/м2, возможно при замене армирования полок этих плит на армирование полки плиты под нагрузку 2500 кгс/м2.

Плиты междуэтажных перекрытий под нормативные временные длительные нагрузки 500-2500 кгс/м2 проверены также на действие погрузчика типа ЭП-0,5 грузоподъемностью 500 кг при отсутствии пола (для использования, например, в период строительства).

Плиты рассчитаны по прочности, деформациям и раскрытию трещин. Полка плит рассчитана с учетом "Руководствано расчету статически неопределимых железобетонных конструкций" (Москва, Стройиздат 1975 г.).

Общие указания по монтажу железобетонных конструкций каркаса

В настоящем разделе приводятся основные требования к монтажу сборных железобетонных конструкций, соблюдение которых в процессе возведения многоэтажных зданий является обязательным.

Указания по возведению лестничных клеток приведены в серии

TK 1976

Пояснительной записка

1.420-12 B6104CK 0-2 ИИ20-8 (альбом I).

UUNDONSAAHUU

Монтаж железобетонных конструкций, электросварку и работы по замоноличиванию стыков элементов и швов перекрытий следует производить в соответствии с требованиями действукцих технических условий и технологических правил, а также в соответствии с
СНиП Ш- 16-73 "Бетонные и железобетонные конструкции сборные.
Правила производства и приемки монтажных работ" и "Инструкции по монтажу сборных железобетонных конструкций промышленных зданий и сооружений" (СН 319-65).

При выполнении монтажных работ рекомендуется пользоваться "Технологическими рекомендациями и рекомендациями на электросварку и заделку стыков сборных железобетонных конструкций многоэтажных промаданий", разработанных совместно с ВНИМонтажспецстроем, ПИ Промстальконструкцией, ВНИПИТеплопроектом и изданных Центральным боро теллической информации Минмонтажспецстроя в 1968 г., а также указаниями, приведенными в рабочих чертежах конкретного объекта и в проекте организации работ. При разработке проекта организации строительно-монтажных работ рекомендуется пользоваться практическим пособием — "Возведение многоэтажных промышленных зданий унифицированных габаритных схем", составленным ЦНИИОМПІ с участием ряда других организаций и изданным Стройиздатом в 1969 г.

Описание монтажа конструкций дается с момента завершения работ нужевого цикла.

Перед установкой колонн должна быть проведена тщательная проверка правильности разбивки фундаментов, совпадения положения осей фундаментов с разбивочными осями и определены фактические отметки дна стаканов фундаментов.

Монтаж конструкций должен производиться в следующем порядке:

I. Стаканы фундаментов колонн очищаются от мусора, грязи и воды, а в зимнее время от снега и наледи.

На дно стакана фундамента укладивается слой жесткого бетона до проектной отметки низа колонны, определенной с учетом фактической длины колонн. Замена бетонного выравнивающего слоя металлическими прокладками не допускается.

Колонни устанавливаются в стаканы фундаментов.

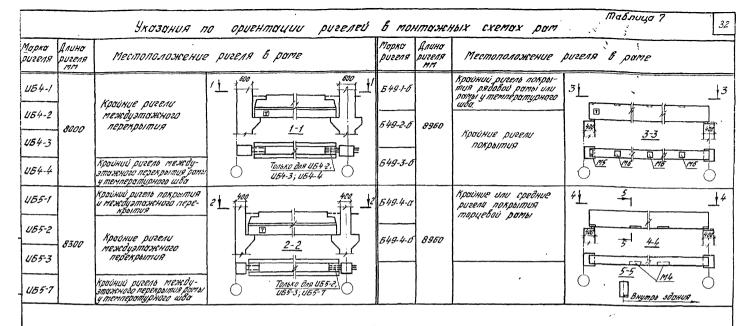
Колонны продольных рам (имеющие цифру "3" в третьей группе

марки) должны ориентироваться закладными деталями для крепления продольных ригелей в сторону продольных ригелей.

Все колонни, устанавливаемие в стакани фундаментов, двухэтажной или 3-х этажной разрезки. После установки, виверки и временного закрепленил колонни, зазоры между стенками стаканов и колонной заполняются бетсчом марки не менее 300 на мелком гравии или щебее.

Монтаж следующих конструкций может, производиться после достижения бетоном замоноличивания 70% проектной прочности в летнее время года, - 100% проектной прочности в зимнее время года.

2. На консоли колонн устанавливаются с точным соблюдением проектного положения ригели первого этажа.


При установке ригелей необходимо обратить внимание на ориентацию закладных деталей. Ригели торцевых рам должны ориентироваться полкой внутрь здания. Признаки ориентации ригелей приведени в таблице 7 на странице 32.

Перед выполнением ванной сварки выпусков арматуры из ригеля и колонны, ригели должны быть раскреплены от потери устойчивости.

Ванная сварка выпусков арматуры класса А-II должна выполняться в медных формах, обеспечивающих наиболее качественное выполнение сварного соединения. Допускается, в случае необходимости, ванную сварку производить одним из способов, рекомендуемых СНиП П-В. I-62^{*}.

В целях снижения количества сварных стиков предусмотрено использование вкладышей из арматуры класса А-Ш только в одном

х) Монтаж конструкций первого перекрытия может производиться после достижения бетоном 50% прочности, к моменту монтажа второго перекрытия прочность бетона должна быть не менее 70%.

Устоновко дополнительной закладной детали в балке покрытия для крепления связей и закладной детали МГУО для крепления стеновой панели.

-). Конец ригеля обозначенный буквай "Т*ориентируется к крайней каланне.
- 2. 30KAOQHDIE DEMOAU MI, M2, M3 DOHDI & CEPUU UU29-2/70.
- 3. Закладные детали М4, М5, М6 даны в серии 1.420-12 выпуск 9.
- 4. Закладная детоль ММЭО дана в серии 1420-12. выпуск 16.

TK NORCHUMENGHOR SONUCKO

1.420-12 Bornyek 0-2 nucm [1-30 из двух узгов каждого пролета; в противоположном узле арматура ригеля и колонни непосредственно соединяется ванной сваркой, при этом на монтаже должна соблюдаться оптимальная величина зазора между стикуемыми стержнями и их соосность.

По согласованию между монтажной организацией и заводом-изготовителем ригели могут поставляться на строительство с измененной длиной випусков арматуры, позволяющей исключить применение вкладышей при стыковании арматуры во всех соединениях ригелей с колоннами.

Сварку закладных деталей ригелей с закладными деталями консолей колони нужно производить после выполнения ванной сварки стыков опорной арматуры во всех пролетах поперечной рамы.

 Устанавливаются и выверяются вертикальные стальные связи или ригели продольных рам.

Связи крепятся электросваркой к закладным деталям колонн.

Продольние ригели устанавливаются на стальные листи, выпутшенные из колони и привариваются к ним. Затем ригель соединяется с колонной путем приварки вертикальных накладок (щек) к закладным деталям ригеля и колонны. После этого выполняется ванная сварка выпусков арматуры из продольного ригеля и колонны.

- 4. Устанавливаются межколонные плиты. Межколонные плиты укладываются вдоль продольных разбивочных осей и привариваются в
 четырех точках к закладным деталям ригелей, стальным столикам; последние крепятся на сварке к закладным деталям колонн до монтажа
 плит. Номинальная длина площадки опирания плит 100 мм. Над продольными ригелями межколонные плиты не устанавливаются. В торцах
 плит по средним рядам колонн устанавливаются упорные уголки и
 привариваются к закладным деталям полок плит. Перед сваркой уголки
 следует плотно прижать одной стороной к колонне.
- 5. В образовавшиеся между межколонных плит проемы устанавливаются рядовые плиты. В крайнем пролете с доборной плитой шириной 1 полтора метра плиты шириной 3 метра привариваются в двух точках.
- 6. К закладным деталям колонн привариваются опорные стальные столики под стеновые панели (при навесных панельных стенах).
 - 7. Устанавливаются стеновые панели.

Цокольные панели первого этажа устанавливаются на фундаментные балки. Навесные панели последующих этажей при ленточном остеклении устанавливаются на стальные столики, привариваемые к закладным деталям колонн. Последовательность монтажа панелей устанавливается в зависимости от конкретных обстоятельств.

- 8. После проверки качества сварных соединений тщательно замоноличиваются узлы сопряжений поперечных и продольных ригелей с колоннами. Перед заполнением бетоном полость между торцом ригеля и колонной тщательно очищают. Бетон для замоноличивания применяется марки 300 на мелком щебне или гравии. Укладка должна производиться с применением вибрирования.
 - 9. Замоноличиваются шви перекрытий.

Перед заполнением бетоном, швы тщательно очищаются. Замоноличивание осуществляется бетоном марки не ниже 200 на мелком гравии или шебне.

10. Монтаж и замоноличивание конструкций второго и третьего этажей (при трехэтажной разрезке колонн) и монтаж связей или продольных ригелей производится в той же последовательности, что и монтаж конструкций первого этажа.

По окончании монтажа перекрытия нед вторым этажом (при двухэтажной разрезке колонн) или нед третьим этажом (при трехэтажной разрезке колонн) устанавливаются колонны следующего яруса.

 При установке колонн должны соблюдаться приведенная ниже последовательность операций.

Определяется отметка верха ранее установленной колонны и фактыческая длина монтируемой. К закладной детали нижней колонны привариваются, подобранные по толщине, рихтовочная пластинка и листовая прокладка.

I2. В стиках колони по наружным рядам и колони торцевых рам к центрирующей прокладке установленной колонии привариваются метал-лические пластинки, выходящие за предели граней колони для крепле-ния к им навесных панельных стен.

TK
1976

Пояснительная записка

13. Устанавливаются колонны следующего яруса и производится выверка их положения в соответствии с требованиями проекта.
Установку колонн производят с помощью кондукторов. После уставовки колонны листовая прокладка приваривается к закладной
детали верхней колонны.

Выпуски арматуры из стыкуемых колони центрироданные при установке соединяются с помощью ванной сварки в инвентарных медных формах.

Последовательность выполнения сварки стержней должна исключать искривление колони вследствии усадочных деформаций швов и появление значительных сварочных напряжений в стержнях.

- 14. После проверки качества сварки, зазор между торцами колонн тжательно зачеканивается жестким раство ом марки не ниже 300; раздвигаются нанизанные ранее сетки; устанаживается арматурный комут и стык омоноличивается бетоном марки 300 на мелком гравии или щебне.
- 15. Монтаж перекрытий последующих этажей производится анажогично монтажу перекрытий первого и второго этажей.
- 16. Плиты покрытий одноэтажных эданий из условий удобства приварки к закладным деталям ригелей, укладываются последовательно ряд за рядом, начиная с одного из торцов здания. По мере укладки осуществляется приварка по продольным и торцевым сторонам плит. Межколонные плиты, перекрывающие опоры ригелей, привариваются только со стороны одного продольного ребра, в одном пролете (см.маркировочные схемы на листах 68,69).

В случае необходимости, например, при монтаже в зимнее время, допускается осуществление монтажа конструкций без немедленного замоноличивания стыков и швов. Для зданий, монтируемых этим способом, сохраняется порядок монтажа конструкций, изложенный в данном разделе. Однако и в этом случае сохраняется требование в части немедленного замоноличивания колони в фундаментах: - монтаж последующих конструкций допускается после достижения бетоном замоноличивания стыка колони с фундаментами 70%х) проектной прочности в летнее время года и 100% проектной

прочности в зимнее время. Прочность бстоно колони, монтируемых указанным способом, должна быть в момент их монтажа не менее 85% проектной прочности на сжатие.

В случае монтама без немедленного замоноличивания стыков конструкций следует предусматривать установку инвентарных вертикальных связей по тем продольным рядам колонн, в которых для стадии эксплуатации не предусмотрена постановка постоянных связей или продольных рам.

При замоноличивании конструкций в зимнее время года должен быть обеспечен прогрев бетонной смеси для достижения 100% проектной прочности.

В процессе монтажа при температуре от минус 30° Си ниже конструкции, необходимо предохранять от ударов, динамических нагрузок и этатической перегрузки. В период монтажа или после его окончания, их можно загружать при температурах ниже минус 30° С лишь статической нагрузкой, не превышающей 0.7 расчетной.

Соединение при монтаже сборных конструкций путем сверки при температуре ниже минус 30°C следует производить в соответствии с требованиями, предъявляемыми к изготоэлению и монтажу стальных конструкций при низких температурах.

Для конструкций, находящихся под непосредственным воздействием вибрационной или динамической нагрузки, сварку закладных деталей на монтаже следует производить электродами типа $342\text{A-}\Phi$ в соответствии с требованиями главы Снип $\text{H-B.I-62}^{\text{X}}$.

II. Применение конструкций в зданиях с агрессивными средами

Сборные железобетонные конструкции разработаны с учетом применения их, как в условиях неэгрессивной, так и слабо-и среднеагрессивной газовой среды.

При применении конструкций в зданиях, эксплуатируемых в условиях со слабо- или среднеагрессивной средой, в проекте здания в соответствии с конкретными условиями эксплуатации и требованиями СН 262-67 должны быть дополнительно проведены:

ТК Пояснительная записка

1.420-12 B6114CK 0-2 NUCM 17-32

к) Монтеж конструкций первого перекрытия может производиться после достижения бетоном 50% прочности: к моменту монтежа второго перекрытия прочность бетона должна быть не менее 70%.

- а) требования по плотности бетона с указанием марки по водопроницаемости, водоцементного отношения и водопоглощения:
- б) марка и расход цемента, состав заполнителей и применяемых добавок:
- в) виды защиты и способы их нанесения на бетонную поверхность изделий и на поверхность стальных закладных элементов;
 - г) требования к качеству бетонной поверхности;
- д) требования к защите закладных деталей и сварных швов после соединения закладных деталей электросваркой в процессе монтажа.

Показатели плотности бетона, карактеризуемые маркой по водонепроницаемости, приведены в нижеследующей таблице:

Таблица 8

		,	raoming c				
No No	Бетон по плот- ности	Показатели плотности бетона					
п.п.		Марка бетона по водонепро- ницаемости	Водопогло- щение в % по массе	Водоцементное отношение в/ц не более			
ı.	Нормальная	B-4	5,7-4,8	0,6			
2.	Повышенная	B6	4,7-4,3	0,55			
3.	Особо плотный	B-8	4 ₁ 2 и менее	0,45			

- Примечения: I. Марка бетона по водонепроницаемости определяется в возрасте 28 суток по ГОСТ 4800-59 "Бетон гидротехнический. Методы испытания бетона".
- 2. Водопоглощение бетона определяется по ГССТ 12730-67. При разработке конструкций учтены требования "Указаний СН 262-67 в части толщины защитных слоев бетона для арматуры, как для конструкций, подвергающихся воздействию слабо-или среднеатрессивной среды.

Примечание: Продольные ребра отдельно стоящих плит (в местах устройства проемов), в случае их применения в условиях слабо-и среднеагрессивной среды должны зашипаться слоем бетона толшиной не менее 25 мм.

В маркировочных схемах поперечных рам, за исключением торцовых рам и у температурных швов, ригели имеющие ширину раскрытия трещин до 0,3 мм используемые в неагрессивной среде, показаны в числителе, а имеющие ширину раскрытия трещин до 0,2 мм, используемие в слабо- и среднеатрессивных средах, покезаны в знаменателе. Поперечные рители указанных рам, не имеющие дробного обозначения марок, имеют ширину раскрытия трещин до 0,2 мм и используются в неагрессивной, слабо- и среднеагрессивных средах.

Пирина раскрытия трещин в колоннах, в ригелях торцовых рам, рамах у температурных швов и в продольных ригелях не превывает 0,2 мм, что по данному признаку удовлетворяет условиям их применения в неагрессивной, слабо— и среднеагрессивной газовых средах.

В маркировочных схемах раскладки плит перекрытий и покрытий серий ИИ24-8 и ИИ24-9 дана неполная рабочая маркировка плит. При разработке проекта рабочие марки плит назначаются по данным приведенным в альбомах рабочих чертежей указавных выше серий в зависимсети от принимаемого класса стали и степени агрессизности среды.

12. Применение конструкций в условиях низких температур и динамических нагрузок

В спецификациях к рабочим чертежам элементов железобетонных конструкций указан только класс стали без указания марки стали.

В проектах конкретных зданий должны быть указаны марки стали арматуры и закладных деталей, а также стальных конструкций.

Назначение марок стали должно производиться в зависимости от температурных условий эксплуатации конструкций и характера нагрузок (статические, динамические), в соответствии с действующими нормативными документами.

Проектирование, изготовление и монтаж стальных конструкций, эксплуатируемых при температуре ниже минус 40° С, должно производиться в соответствии со СНиП П-В.3-72 "Стальные конструкции. Нормы проектирования".

Для железобетонных конструкций, рассчитанных на эксплуатацию при температурах выше минус 30° С, в случае их монтажа в условиях температур минус 30° С и ниже, должны предусматриваться временные ограничения по их загружению.

Th

Пояснительная записка

3. 420-12 B61114CK 0-2

ТАБЛИЦА ПРИМЕНЕНИЯ МАРОК УГЛЕРОДИСТЫХ СТАЛЕЙ

Класс	Диаметр арматуры	Стати	неские нагрузки	Динамическ	ие нагрузки			
стали	в мм или толщина проката	до -30°C	+30° до +55°C	до -30 ⁰ C	-30° до -55°С			
A-I	6 - 40	СтЗкиЗ	Ct3cn3 B Ct3cn2 B Ct3lnc2	СтЗкиЗ	В Ст3сп2 В Ст3Гпс2* (Ø до 18 мм)			
A-III	6 - 4 0	35TC	25T2C	35TC	25T2C*			
A-IY			50 XL 5f	20XL5T	50XL5TI _{**}			
А-У	IO - 22	,	23X2F2 T	•				
Ат-У	IO - 25		\T-J	AT-Y ^{XXX}				
Ат-УІ	IO - 25		AT-VI	`	AT+VI***			
Прокат для свя- зей и фахверка	т для свя-		В Ст3сн5 В Ст3Гпс5	7	7			
с 38/23 закладные детали	4 - IO II - 30 II - 25	в Ст3кп2	в Ст3пс6 ^{жжж}	В Ст3пс6 В Ст3сп5 В Ст3Гпс5	В СтЗпс6 ^{жких} В СтЗГпс5 ^{жких} В СтЗсп5 ^{жких}			

- І. Расчетные зимние температуры наружного воздуха устанавливаются по наиболее холодной пятидневке в зависимости от района строительства.
- 2. Для железобетонных конструкций за динамические нагрузки приняты учитываемые в расчетах с коэффициентом динамически I,I и более.
- 3. К стальчым конструкциям подвергающимся динамическому воздействию подвижных нагрузок, относятся конструкции подлежащие расчету на выносливость.

TK 1976

MORCHUTENHAR SOMUCKO

1.420 - 12 Bolnyck 0-2

740.01

ж — применять только в вязаных каркасах; жж — ниже минус 40° С применять в виде целых стержней мерной длини; жжж — не допускается применять котда требуется расчет на виносливость; жжжж — до минус 40° С для проката толщиной 4--30 мм.

Текие конструкции разрешается загружать только статической нагружкой, равной не более 0,7 от расчетной, впредь до создания постоянных условий эксплуатации конструкций, при температурах не ниже минус $30^{\circ}C$.

13. Общие указания по применению рабочих чертежей

- I. Сборные железобетонные изделия заводского изготовления, чертежи которых приведены в альбомах, могут применяться для строительства многоэтажных промышленных здений и сооружений в соответствии с меркировочными схемами и положениями нестоящего выпуска. Изделия можно применять при расчетной сейсмичности не более 6-ти баллов.
- 2. Для зданий и сооружений, конструкции которых подвержены воздействию, кроме статических, также динамическим нагрузкам, назначение марок железобетонных элементов должно производиться на основе соответствующего расчета и с соблюдением дополнительных требований главы СниП П-В.1-62^X и "Инструкции по проектированию и расчету несущих конструкций промышленных зданий и сооружений на динамические нагрузки".
- 3. При применении конструкции настоящей серии в условиях постоянного воздействия температуры выше $+50^{\circ}$ С назначение марок изделий должно производиться на основе расчета с соблюдением требований главы СНиП П-В.7-67.
- 4. В случае отличия нагрузок проектируемого здания от равномерно распределенных, принятых при расчете конструкций серии ИИ2О и приведенных в альбоме, каркас следует пересчитать на действие фактической нагрузки и назначить марки элементов поперечного и продольного каркаса в соответствии с полученными усилиями, используя при этом типовые изделия необходимой несущей способности.

Назначение марок элементов для здений, не предусмотренных габаритинми схемами, следует производить на основе статического расчета, используя при этом типовые железобетонные элементы необходимой несущей способности.

Для зданий и сооружений, на всех перекрытиях которых прикладывается 100% значение принятой в настоящей работе временной длительной нагрузки, назначение марок колонн следует производить на основе статического расчета, так как в данном случае не применим понижающий коэффициент m = 0,8 к временной диительной нагрузке, принятой при расчете колонн и учитывающей степень одновременности приложения нагрузки.

- 5. Конструкции многозтажных проимшленных зданий рэзработаны для зданий и сооружений, возводимых на непросадочных грунтах. Конструкции могут быть использованы для зданий, возводимых на основаниях, сложенных просадочными грунтами, при условии выполнения требований СНиП П-15-74 по проектированию оснований и конструктивных мероприятий, обеспечивающих общую устойчивость и эксплуатационную пригодность зданий.
- 6. Выбор вериантя конструктивного решения продольного керкеся, решеемого либо с использованием вертикальных связей, размещаемых по всем или части продольных рядов колони, либо путем устройства по внутренеим рядам продольных рам
- производится при проектировании конкретных объектов с учетом требований в части жесткости каркаса здания, а также фектической жесткости дисков перекрытий.

Жесткость каркаса в продольном направлении, карактеризуются величиной смещения адания в уровне покрытия, которая в случае обеспечения продольной устойчивости путем постановки вертикальных связей не превышает $\frac{H}{1000}$ (H — высота от верха фундамента до покрытия верхнего этажа).

Жесткости связей подобраны таким образом, что величина относительного прогиба каркаса при постановке связей разреженно или но всем рядам колоне меняется несущественно.

Величина смещения здания в уровне покрытия в случае обеспечения продольной устойчивости путем устройства продольных однопролетных рам не превышает $\frac{1}{750}$ H и $\frac{H}{500}$ для четырех и пятиэталных рам каркасов при использовании в покрытии плит одноэталных зданий.

7. В случае постановки связей по каждому продольному ряду колонн допускается образование проемов в перекрытиях без ограничения
площади и местоположения, однако установка межколонных плит между

ΤK	Dogoverna and a second	1420 BUNYO	1.12 x 0.2
 1976	ПОЯСНИТЕЛЬНАЯ ЗАПИСКА ;	JUCM	11-35

всеми колоннами является обязательной.

В случае постановки связей по части продольных рядов колонн не допускается образование проемов в ячейках, примыкающих к торцам здания; кроме того, число ячеек каждого пролета, имеющих проемы, не должно превышать 50%, в противном случае, следует установить связи и по прилегающим к данному пролету рядам колонн. Установки межколонных плит (между всеми колоннами) является обязательной.

_ В двухпролетных эданиях с горизонтальными нагрузками, по величине не превышающими принятых в расчете, но не симметричными по отношению к поперечной или продольной осям симметрии эдания — не допускается применение каркасов с вертикальными связями, располагаемыми только по среднему ряду колонн. В таких случаях следует обеспечение продольной устойчивости здания решать индивидуально.

В зданиях, состоящих из нескольких температурных блоков, связи должны устанавливаться в каждом блоке.

8. При решении продольного каркаса, предусматривающего устройство однопролетных продольных рам по внутренним рядам, не допускается образование проемов в ячейках примыкающих к торцам здания. Кроме того, число ячеек крайних пролетов, имеющих проемы, не должны превышать 50%. В ячейках средних (внутренних) пролетов допускается образование проемов без ограничения площади, однако установка межколонных плит между всеми колоннами является обязательной.

В двухпролетных зданиях с горизонтальными нагрузками, по величине не превышающими принятых в расчете, но несимметричными по отношению к поперечной или продольной оси симметрии здания, не допускается применение каркасов с продольными рамами только по среднему ряду колонн.

Число однопролетних рам в каждом рядуустанавливается по материалам настоящего альбомас учетом числа температурных блоков здания.

9. В тех случаях, когда полная расчетная нагрузка в одном из двух примыкающих к ригелю продольных пролетах более, чем в два раза превышает полную расчетную нагрузку в другом из этих пролетов, ригели должны быть проверены на совместное действие крутящего и изгибающего моментов, а также на совместное действие крутящего момента

и поперечной силы.

10. В каркасах с одинаковой сеткой колонн во всех этажах при применении в покрытии типовых плит одноэтажных зданий рабочие марки плит и ригелей устанавливаются по фактической нагрузке для конкретного объекта и с учетом расположения закладных деталей. Величина нагрузки от снега, собственного веса конструкций (плит), кровли и подвесного транспорта не должна превышать несущей способности ригелей. К рабочей марке ригелей и плит добавляются буквенные индексн "а", 6", 6" и "г", характеризующие различие по расположению закладных деталей.

II. Рабочие марки плит и балок покрытий в зданиях с укрупненной сеткой колонн верхнего этажа устанавливаются по фактической для данного района снеговой нагрузке, нагрузке от конструкции кровли и от подвесного транспорта.

В балках следует предусматривать закладные детали для крепления вертикальных связей, устанавливаемых по колоннам, пример установки закладных деталей дан на стр. 32.

В торцах балок, а также в плитах покрытия, устанавливаемых у наружных продольных стен, необходимо предусмотреть установку закладных деталей для крепления парапетных панелей в соответствии с материалами альбома серии 1.420-12вниуска 0-4.

12. Рабочие чертежи деталей парапетов, температурных швов и деталей пропуска коммуникаций должны разрабативаться по типу деталей серии ТДА 24-1/70, но с привязкой верха парапетной панели к верху плиты покрытия на 300 мм ниже.

При покрытии с применением илит одновтажных зданий кроме ТДА 24-1/70 должны использоваться материалы альбома I.420-12 выпуск I5.

13. Чертежи фундаментов разрабатываются в конкретных проектах индивидуально с учетом местных условий.

Нагрузки от колони для расчета фундаментов приведены в настоящем альбоме на листах 88+104.

Пояснительная записка

Пояснительная записка

Лист п-36

1111

1111

14. На монтажных схемах каркасов и перекрытий проставляются марки железобетонных изделий, а также номера монтажных деталей и дается ссылка на соответствующие альбомы конструкций и альбомы монтажных деталей.**)

При разработке монтажных схем перекрытий и покрытий конкретных зданий, выбор марок плит и класса стали, должен производиться в соответствии с указаниями, приведенными в пояснительной записке к альбомам серий ИИ24-8 и ИИ24-9.

В соответствии с указаниями по ориентации крайних ригелей, приведенными на странице 32 , на монтажных схемах даются соответствующие пояснения, а в случае применения продольных рам даются указания о том, что при установке колонн продольных рам выпуска арматуры, предназначенные для соединения с арматурой продольных ригелей, должны быть обращены в сторону ригелей продольных рам (навстречу друг другу).

В зависимости от конкретных условий эксплуатации конструкций в проекте приводятся указания о защите конструкций от коррозии и назначаются марки сталей:

Для изделий, применяемых с небольшими изменениями (в части. закладных деталей и т.д.), в конкретных проектах дартся чертежи, в которых отражается вносимое изменение: - опалубочные чертежи с выборкой стали, показатели расходов материалов и т.д., в также чертежи дополнительных элементов, например, закладных деталей и т.п.

В проекте указывается, что данные чертежи должны рассматриваться совместно с типовыми чертежами соответствующих марок изделий. В проектах типовые чертежи изделий, а также типовые детали не вычерчиваются.

. Проект конкретного здания должен содержать общие указания по монтажу конструкции, изложенные в разделе 10 пояснительной записки к данному альбому.

*) В монтажных чертежах объекта необходимо разъяснить, что деталь 19 следует выполнять по чертежу альбома ТДМ22-1/70, совместно с чертежами деталей 22,24 и 34 серии 1.420-12 вып.12.

14. Маркировка железобетонных изделий

. Первая часть марки является обозначением типоразмера конструкции и состоит из буквенного обозначения тиша конструкции (К-колонны, Б-ригели, П-плиты и т.д.) и порядкового номера типоразмера в предедах каждого типа конструкции.

Индекс "И" (ИБ-5-1) в начале марох ригелей обозначает, что конструкция разработана в составе серии ИИ 20/70; индекс "а" ("К IIa-3-3") после порядкового номера типоразмера колонны обозначает, что конструкция стыка разработана с выпусками продольной арматуры, соединенными на ванной свёрке.

Вторая часть марки характеризует различие в несущей способности железобетонных конструкций и проставляется порядковым номером в пределах каждого типоразмера конструкций.

Третья часть марки характеризует разновидность конструкции, вызванную различием в закладных деталях, наличием отверстий и т.д.

Марки плит серии ; NN24-8 и NN24-9 обозначаются дробью. В числителе тип, несущая способность и разновидность, как отмечено выше: в знаменателе – класс стали (например: $\frac{\Pi I-2-I}{A}$

Примеры маркировки конструкций: колоны — KIa-I, KIa-I-I, KIa-I-2, плиты $\frac{\Pi I-I}{A-I y}$, $\frac{\Pi I-2-I}{A-I y}$, ригели ИБ5-I, ИБ5-2-I и т.д.

Изделиям, применяемым в проектах с небольшими изменениями (в части закладных деталей, отверстий), наличие которых не влияет на основные характеристики изделий, присваиваются марки, состоящие из обозначения, принятого в настоящей работе, с добавлением в конце марки буквенного индекса, например ИБ5-2a, ИБ5-2-Ia, КIa-2a, KIa2-Id.

В марку конструкций, применяемых в условиях агрессивных сред, низких температур и т.п. с соблюдением дополнительных требований, устанавливаемых в конкретных проектах, следует вводить дополнительное буквенное обозначение.

Для конструкции, применяемых в условиях слабо и среднеагрессивной среды рекомендуется дополнительно к установленной марке добавлять следующие буквенные обозначения.

TK 1976

NORCHUTEABHAR SANUCKO

1.420-12 BUNYCK 0-2

- "н" при изготовлении конструкции с нормальной плотностью бетона:
- " .п. " при изготовлении конструкций с повышенной плотностью бетона:
- ", O" при: изготовлении конструкций с особо плотным бетоном.

Например, если при отсутствии специальных требований к плотности бетона применяется колонна или ригели марок K2Ia-2-4, ИБ5-I, то маркировка при специальных требованиях принимается;

- при требуемой нормальной плотности бетона K2Ia-2-4-H, M55-I-H;
- -при: требуемой повышенной плотности бетона K2Ia-2-4- П, ИБ5-I- П:
- при требуемом особо плотном бетоне K2Ia-2-4- Q, ME5-I- O.

15. Показатели расхода материалов

Определение расхода материалов произведено по средней секции 4-х этажного здания длижов 6 м при ширине 18 м.

Расход материалов дан на I м2 площади 2-го сверху этажа высотор 4,8 м под нормативные временные длительные нагрузки 500, 1000 м. 1500 кгс/м2.

Показатели расхода материалов на I 2 этажа приведены на все желе зобетонные элементи (таблица 2); отдельно на плити перекрытия (таблица 2), на поперечные ригели и колонны (таблица 2).

Расход материалов определен для зданий с неагрессивной средой.

Расход стали по плитам подсчитан для вариантов армирования плит с преднапряженной арматурой классов A-IV и AT-V.

Расход материалов для варианта с применением типовых плит одноэтажных зданий дан на I м2 площади, покрытия под расчетные нагрузки на ригели покрытия 4000, 5200, 7300 кгс/м (без учета

собственного веса ригелей).

Показатели расхода материалов на I м2 площади покрытия приве ени на все железобетонние элементи (таблица 15), отдельно на плиты покрытия (таблица 13), на ригели поперечных рам (таблица 14).

Маркировочные схемы

Пояснительная записка

- I. Маркировочные схемы поперечных рам даны применительно к каждой унифицированной габаритной схеме. Типы поперечных рам обозначены шифрами, например 2-9-4(48), п-9-4(60,48), цифровые и буквенные обозначения которых означают следующее:
- а) для рамы 2-9-4(48);2 число пролетов; 9 - длина пролета в местрах, 4 - количество этажей,(48)- визота каждого этажа в дециметрах;
- б) для рамы n-9-4(60,48): m- число пролетов, не менее 3; 9- длина пролета в метрах, 4- количество этажей, 60,48- высота первого этажа равная 60 дециметрам и высота последующих этажей, равная 48 дециметрам;
- в) для рамы 2-9-4(48,48,72) : 2 число пролетов; 9 длина пролета в метрах, 4 количество этажей, (48,48,72) высота первого и последурщих этажей, за исключением верхнего, равная 48 дециметрам и высота верхнего этажа, равная 72 дециметрам.
- 2. К "рядовим" колоннам в маркировочных схемах отнесены колонны поперечных рам (за исключением поперечных рам, располагаемых в торцах зданий), к которым не крепятся ригели продольным рам или вертикальные стальные связи.

TK 1976

Пояснительная записка

1.420 · 12 88/11/CK 0-2 1/420 · 12 1/40 · 12 1/40 ·

Расхад потериалов по ж. б. плитат на 1 т² площоди покрытия или перекрытия

5	Яртирование		Бетон, в	M3	Сталь (натуральная); в кг					
Nonuvecmbo	חטונון	Сборный	M	0	Плиты	BREMEHHOLE O	เออนฉนากอุหาร			
		Соорный	Маналитный	Всего	покрытий	500	1000	1500		
2	Напряженное	0, 104	0,0145	0,1179	7.3/6.8	7.8/7.3	9.2/8.6	10,6/9,9		

TOBNULO 11

Расход патериалов на ж.б. ригели и колонны на 111° площоди перекрытия 2° сверху этажа

	"- 0	_		Бетон в м.	r	Сталь (натуральная). в кг							
-	Ranuvecmba npanemab	Арпиравание	[борный	Маналитный	Breen	But	Времен	HOSE AND	IMEASHE	IE HODI	1810		
	,	'κομέπρυκιμού	c copnois	VIUNUJIQIII HOIQ	Dreed	канструкций	500		1000		150	00	
	2	Ненапряженное	0.073	0.003	0.076	Колониы	7.8	15,8	7,8	19,2	8,5	21.1	
	.2	Напряженное	,,,,,	3,000	5,575	Puzenu	3,0		11.4		13,5		

Τσδπυμσ 12

Расхад материалов на ж.б. элементы на Ім² площади перекрытия 2° сверху этожа

Количество	Артирование		Бептон, 8 м	r	· Cmans (натуральная); вкг							
nganemas	nnum	ะ 600หมน์	Маналитный	Bcezo	Временные длительные нармативные наерузка							
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		/			500	1000	1500					
. 2	. напряженное	0,177	0,0171	0,194	245/24,1	28,4/27,8	31,7/31,0					

- 1. В числителе дан расход стали дри армировании плит сталью класса А: 🗓, а в энотенателе-при армиравании плит стально класса Ат-У
- г. В таблицах расход материалов дан по конструкциям для Т ветравага рабана.

Пояснительная записка

Bunuer U-É

Расход татериалов по ж.б. плитот на Імг плащави покрытия

Τοσημυσ13

Количество	Армирование	Бе	тон , в м ³		Knace	Столь (натуральная), в кг Расчетные нагрузки на плиты покрытия, в кгс [нг					
пропетов	nnum	Сборный	Монолитный	Beero	CMONU	560 840 950					
					<i>А-ШВ</i>	57	7,4	9,0			
2	HUNDAMEHHOE	0,0594	0,0052	0,0656	A-II	5,4	<u>6,6</u> 7,0	8,3			

Расход татериолов на ж.б ригели на 1112 площади покрытия

Τασπυμα14

Количества паплетав	Артировськие ригелей	£	Temon, 8 m³		Клосс ст олц	Сталь (натуральная), в кг Росчетные нагрузки на ригели пакрытия, в кге ігі				
пролетов	μοιοπίο	Сборный	Монолипный	Bereo		4000	5200	7200		
2	НОПОЯЖЕННОЕ	0.03	0.0002	0.0302	A-III8	5,1.	6,4	9,6		
	manyon noonnoo	0,00	, 0,0002	0,-502	A-IV	5,1	64	86		

Расход материалов на ж.б. элементы на 1 мг площади покрытия

Ταδηυμα 15

Kanuvecmbo		Бетон	1, 8 m³		Knacc	Сталь (натуральная), в кг Росчетные нагрузки на ригели пакрытия : в кгс/м				
npanemob)	канструкций	Еборный	Маналитный	Beeen ·	C/TIQ/IU	4000	5200	7200		
					A-1118	10,8	13,8 14,1	18,6		
2	напряженное	DRHEHHOE 0,0894 0,00		0,0958	A-II	10,5	<u>130</u> 13,4	16,9		

ầng xonompyryuú, πρυτιεμя εποιχ δ οποίο σ ορεθμεσε**ρετιυδιού** εστοδού τ $\dot{\rho}$ εσε

Пояснительная записка

1 420 - 12 BUNYEK 0-2

К "колоннам продольных рам" отнесены колонны внутренних продольных рядов, входящие в состав поперечных рам несущего каркаса, и которые одновременно используются для крепления ригелея рам продольного направления.

К "связевым" колоннам отнесени колонны, входящие в состав поперечных рам несущего каркаса и используемые для крепления вертикальных стальных связей продольного направления.

К "торцевым" колоннам отнесены колонны, входящие в состав поперечных рам, расположенных у торцов здания. Колонны рам, расположенных у температурных швов обозначены "У Т П".

Таким образом, каждая поперечная рама, за исключением рам, расположенных у торцов и температурных швов, составляется:

- только из марок "рядових" колони в тех случаях, когда в данную раму не входят связевые колонии или колонии продольных рам;
- из марок "рядовнх" холонн и "колонн продольных рам" в тех случаях, когда в данную раму входят также колонны продольных рам;
- из марок "рядовых" колонн и "связевых" колонн в тех случаях, когда в данную раму входят также связевые колонны;
- из марок "связевых" колонн, если связи устанавливаются по каждому ряду колонн.

Марки элементов торцевых рам и рам, расположенных у температурных швов, даны в виде дроби.

В числителе указаны конструкции, относящиеся к торцевым рамам, в знаменателе — рамам, расположенным у температурных швов.

3. На маркировочных схемах поперечных рам зданий, решаемых с применением вертикальных связей, маркировка связеных колоны дана в двух вариантах в зависимости от размещения связей: разременно или по каждому продольному ряду колоны. Марки связевых колоны, отвечающие случаю разреженной постановки связей, приведены в графе "а", марки связевых колоны, отвечающие постановке связей по каждому ряду колоны приведены в графе "б".

Маркировочные схемы вертикальных связей по колоннам даны в альбоме серии. ИИ20-2/7.0, для случая постановки связей по каждому ряду (строка "б") колонн на листах 84-85, для случая разреженном постановки связей (строка "a") на листах 75-83.

4. Наличие в графе "колонни продольних рам" или "связевие" колонни (строка "а") только одних прочерков означает, что при данних условиях нельзя либо подобрать майку колонни необходимой несущей способности, либо — в случае решения продольной устойчивости с помощью рам — величина смещения каркаса здания в продольном направлении превншает Н при числе рам по каждому внутреннему ряду колонн равном 3.

В монтажных схемах каркасов с применением плит одновтажных зданий наличие прочерка для рамного варианта означает, что величина смещения каркаса превышает $\frac{H}{500}$ при трех продольных рамах.

В этом случае продольная устойчивость здания решается либо путем постановки связей по каждому продольному p_R ду колони, либо по индивидуальному проекту.

В последнем случае, можно, например, предусмотреть установку связей или продольных рам по наружным рядам колони, запроектировать колонии с более высокой маркой бетона или повышением прощента армирования, увеличить число связених устоев или рам в ряду и т.д.

В индивидуальном проекте можно предусмотреть установку продольных рам по наружным рядам колонн и увеличить число рам в ряду.

5. Марки ригелей торцовых рам, или рам у температурных швов назначаются по маркам ригелей, ухазанным против графы "торцевне / У Т ш". В числителе указаны марки ригелей торцевых рам, в знаменателе - ригелей рам и у температурных швов. Марки ригелей остальных поперечных рам назначаются по маркам ригелей, приведенным в строке, расположенной против наименования типов колоны: "рядовые", "колонны продольных рам", "связевые".

TK 1976

Пояснительноя записка

1.420-12 BBINYCK 0-2 6. В тех случаях, когда марки ригелеи, приведенные в строках, расположенных против наименования типов колонн "рядовне", связевне", продольные", указани в виде дроби. — в числителе дана марка ригеля, ширина раскрытия трещин в котором не превышает 0,3 мм; а в знаменателе дана марка ригеля, ширина раскрытия трещини в котором не превышает 0,2 мм. Если в графе указана одна марка ригеля, то ширина раскрытия трещин не превышает 0,2 мм. В ширина раскрытия трещин в колоннах в ригелях торцевых рам и рам у температурных швов и в продольных ригелях не превышает 0,2 мм.

7. Для эданий с укрупненной сеткой колонн верхнего этажа марку балки покрытия по серии. I.462-3 следует принять по фактической нагрузке, предусмотрев в ней закладные детали для крепления вертикальных связей, устанавливаемых по колоннам наружного ряда и закладных деталей для крепления продольных

CTCH. .

8. Марка монтажной детали 2, указанная в скобках, используется в случає смещения оси колонн у температурного шва с поперечной разбивочной оси на 500 мм внутрь здания.

Количество однопролетных продольных рам, устанавливаемых по каждому внутреннему продольному ряду колони, определяется по материалам таблиц приведенных в настоящем альбоме на листах 72.474°

9. В маркировочных схемах поперечных рам при: двух цифрах в графах рабочих монтажных марок деталей стыков колони, первая обозначает узел для крайнего продольного ряда, вторая для среднего продольного ряда колони.

В маркировочных схемах торцевых рам при двух цифрах в графах рабочих марок стыков ригелей, первая обозначает узел без арматурной вставки, вторая — со вставкой.

10. Маркировочные схемы раскладки плит перекрытий и покрытий даны на листах 42, 43,68,69. В таблицах рабочих марок условно дан только числитель: полная марка плит с указанием класса стали определяется в зависимости: от величины эксплуатационной нагрузки и агрессивности: среды по альбомам ИИ24-8 и ИИ24-9.

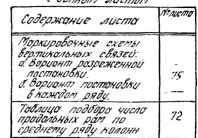
II. Рабочие марки монтажных деталей I-42 даны в альбоме ТПМ 22-I-70; 43-65 даны в альбоме I.420-I2 выпуск IO.

TK 1976

Пояснительная записка

1.420-12 BOINYCK 0-2

Auct 17-42


ж) Ригели под нормативную временную длительную нагрузку 1500 кгс/м2 разработаны для применения в неагрессивном газовом среде и имеют ширину раскрытия трещин - 0.8 мм.

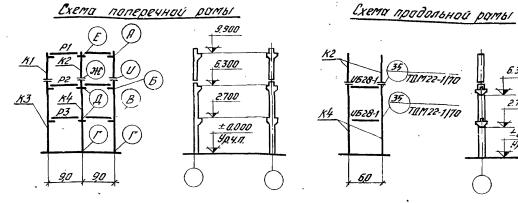
РАЗДЕЛ II

МАРКИРОВОЧНЫЕ СХЕМЫ ПОПЕРЕЧНЫХ И ПРОДОЛЬНЫХ РАМ С ПРИМЕНЕНИЕМ В ПОКРЫТИИ ПЛИТ ПО СЕРИИ ИИ24

Ехето продольной раты

Перечень листов альбота, расстатриваетых сэвтестно מסחושעת מושאאטל

$ \begin{array}{c cccc} \hline \rho_{1} & \hline \hline E & A \\ \hline \rho_{2} & \hline \hline D & B \\ \hline \hline M2 & C \\ \hline \end{array} $	\$900 6 300 2 700 \$4,800	10528-1 35 TAM 22-1/10 6300 10528-1 35 TAM 22-1/10 2-0.00 -0.00 -0.00	
90 90	\bigcirc	<u>ao</u>	


rrrp no	Нортативная Коеменная	TUA KONOHH	. !	YCAOBH NDOGO	BIE MO. BBHOIX	OKU KO	ONOHH EPEYH.	no exe	מינטיין דיו	Yenat	HOILE P	WOKU L	DOME	1 10 C.	XEME	9000	BHOIR TO CX	MODI	KU M	PPEYA	H Hbl.	OOMB	70/102	Ü
"Коростно Пун оп ору Ветра	DAUTEABHAN HOZDY3KA KO	NO NONOMEHU	ID	KI	K2					PI	P2	P3	Í –		Γ	A	5	B	1	1	E	\mathcal{H}	U	_
ветра	NEDEKPONUE KREJM?	по положень в каркасе		POT040 1.42	18 MOD	KU KU BU	ONNH VINYEKT	no ce,	000	Pooto UU23-2	40e 17	OPKU D DUEBBIS	UZENEÛ NO 1.5	110 CE	Epuu Esin. T	P00.	oyue cepu	MOON	N 19 19	1/10 U	HCHO!	x de	TION E	eú 10
		PADOBBIE		11610-32	4620-2]			T	T	_
		KONOHHUI NDE BONUHUIX DÜL	7-		K62n-3-3						ł												- 1	
	500	Связевые	0		1624-3-1					U55-1	465-1	455-1			ĺ	19	3	3	1	7	17			ı
_		7 0	8				·	ļ		F/31 2	5/07	-/				Cherry	70/07	1000					1	i
<i>I-I</i> Y		Торцевые/у	m.w.	1619.3-2	N 623-2		<u> </u>			5431 / 10557	1557	1557				34	10,99	48;49/ 20	43	50/24	53/29		_]	
		PADOBBIE		4610-4-2	K620.3		<u> </u>			1							1					- 1	1	
		KONOHHII NOU BOSHHIX PU	7		K62a43				<u> </u>	l s	1		·						1	1	\	1		
	1000	ใช้คระชื่อเล	0		K620-3-1					U55-1	U55-2	455-2				19	3	3	1	9	17		- 1	
			0							-9		1					l _			ĺ		1	į	
		Торцевые /у,	n.u.	<u>K610-3-5</u> K610-42	K620-2-5 K620-3					5431 1657	1643-1	543-1				74,55 _/ 34	4849/	40,49/ 20	43	50/24	53/29		l	
		PAROBBIE	İ	11630-1-2								¥27.												
		KONDHHOI MOU BONDHOIX DOM	?-	_	_]	115.67											- }		
	1500	[893e861e	O		1640-1-1					U55-1	-	454-3				19	3	3	1	9	17			
			5													·								
		Topueboie/y	M.W.	K 630-1-5	K649-1-5					543-1	15437	1544				5455	40.49	44,45/	43	50/24	53/	l		

1. YKOSOHUA NO NDUMEHEHUHO MODKUDOBOYHOIX CXEM DOHBI B NOACHUMENBHOÙ SONUCKE.

2. Ригели продольных ром приничающей по ольбому ИЦ23-1/70.

Маркировочная схета поперечных рат 2-9-3 (36) Маркировочная схема продольной раты.

1420-12 BOINYCK 0-2 Sucm

Перечень лустов альбота, . poccnompubaerosx собтестно c данным лустом

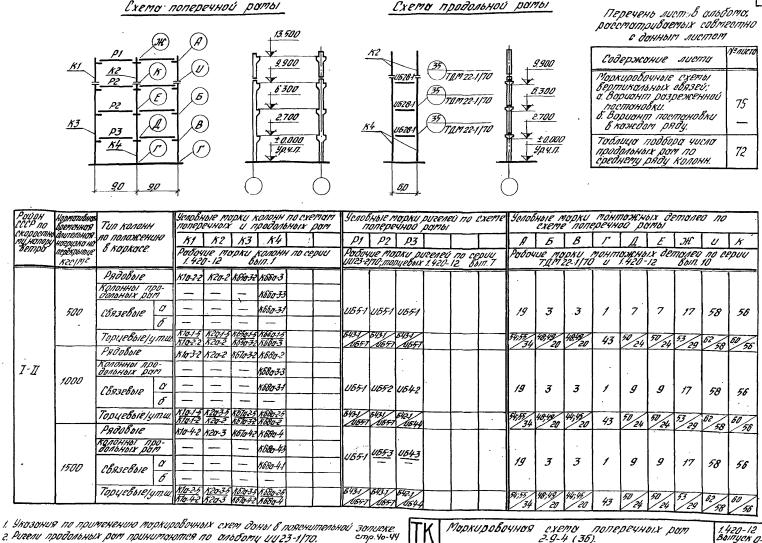
6.300

2.700

±0.000

40.4.17.

TAM 22-1170


Содержание листа	Nº AUC MO
Мархировочные схеты вертикальных связей: а Вариант разреженной претановки в Вариант постановки в кождот ряду.	75
Тоблицо подборо число продольных рот по среднету ряду колонн	72

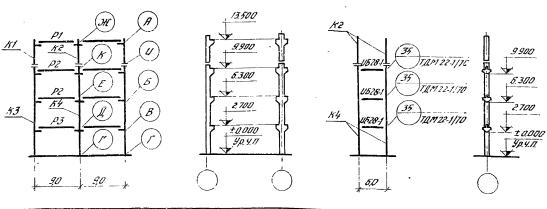
POWOH LCCP NO	Ноомотивноя Временноя	Тип колонн	Yenobe nonet	IDIE MU	OKU KE	ONOHH M	O CXEM	DAN DA	40008	HOIR M	OPHU N	DUZENE POP	10 10	cxeme	9c106	HBIE I	YOOKU EME	MOHI	710240	4618 0	teman	neci
скоростно- ту нопору	AUTENBHOR HORDYJKO HO NEGEK DBITUE KEC/M2	no nonomenum b kapkace	KI	K2	K3	K4			Protour	P2	P3				A	5	B	1	Д	E	Ж	<u>u</u>
Bempo	KSC/MS		1.420	12 1901	86111.1	nohh n	o cepue	/	P0004U	10; 00	pyebbl	eneú 1 K no 1.42	10 cept 0-12 86	17.7	CEDUS	UP 190	M 22-11	70; 1.4	120-12	x deni Bol	11.10	110
		PADOBBIE	K10-2-2	K20-1	K30-2-2	K40-1																
		KONOHHII NOO- BONDHIIX PARI				1440-23																
	500	CB93ebbie A				K40-1-1			455-1	U55-1	455-1		t		19	3	3	1	7	17	56	58
		Topyebbie /y m.w.	K/Q-2-5 810-2-2	K <u>20-1-5</u>	K30-2-5	K40-25			543-1 U55-7	543-1 U55-7	543-1 U55-7	· .			5%,55 34	48,49/	48,492	43	50 24	53 29	60.56	6235
		PADOBAIR	K14-2-2	K20-2	K30-4-2	K40-2		i	0077	0007	0057	<u> </u>								,		1
		ROJOHHOL DOM				K40-3-3		,	455-1	455-2	455-2				19	3	3	1	9	12	55	58
I-A	1000	C69386618 Q				K40-2-1														'n		
		Topyebole /ymw.	N/0-25	<u> </u>	K30-2-5	<u> </u>		 -	<u> 543-1</u> 455-7	543.1 1155-4	543-1 U55-7		 		54,55 34	40,49/	48,49/ 20	43	50/24	53 29	60 56	52/58
		PADOBBIE	K/0-2-2	K20-3	K70-2-2	K89-2			1		0257											
		KONDHHU MDO- DONGHOIX DOM							U55-1	1155.7	115/12				19	3	3	,	9	17	56	58
<i>I-I</i>	1500	lensebbie a				K80-21			4007	<u>U55-3</u>	<u>UD4-3</u>				/3	,	,		9	''	10	
			10-25 10-2-2	<u>K20-3-5</u> K2q-3	K TO-2-5 K TO-2-2	<u> </u>			543-1 U55-7	<u>643-1</u> UB5-7	<u>542-1</u> U54-4				54,55 34	48;49/ 20	4445 20	43	50 24	53/29	50 56	62/58

^{1.} Указания по применению торкировочных ехет доны в пояснительной зописке стрчо-чч

TI	Маркировочная схета поперечных рат	1.420-	12
IIK	2 0.3 (36)	Buryen	51-2
1111	Marino Parino avana goldo abuni anno	3000	
1976	TIOPRUNDOOGHOS EXPINE IIPOCONONO DUITO.	1 /	1
1310	Моркировочная схета поперечных рат 2-9-3 (36) Моркировочноя схета продольной раты Вариант двухэтожной разреэки калонн нижних этажей	JUCITI	2

г. Ригели продольных ром принимаются по альбому ии 23-1/10.

cmp.40-44


15740-01

2.9-4 (36) MODRUDOBOUHOR CXEMO ADOBOAGHOÚ DOMBI

Bainyek 0-2

Ua

Nuem

Перечень листов альбота, расстотриваетых совтестна C DUHHBIM AUCMOM

Содержание листа	NºAUCTO
Морхировочные схеты веотикомыных связей:	
а. Вариант разреженной постановки	75
б. вориант постановки в кождот ряду.	
Тьблицо подборо число продольных рот по хреднету ряду колонн,	72

POUGH LELP NO	Нарпогивния Временноя Влительния		Условн попер	IBIE MO	DKU KI Y U NJ	DOBONE	no exeman Hoix pain.	Услог	RHBIE P.	10PXU 4HOO	DURENEL DOMBI	i no c	EXEME	90,008 0x	HOIE M. EME 1.	onepe	MOHM. YHOÙ	1024 Hb. 171 0 0	IX de.	MONEL	1 10	
EKODOEM- HOMY	HORPYSKO HO	טוטווט אוטאונטווטוו טוו	151	152	K3	154		PI	P2	P3				A	5	B	1	1	£	H	U	15
Harry Harropy Bempa	nepekportue K2C/M2	b raprace	Pa604 1.420	UE MO, 1-12	OKU P Bbli	ONOHH NYCK 1	по серии	PO 604 4023-27	UE MO	OLLEBOIX	12012Ú 1.420-	10 CE	20UU 81111. T	Postor	IUE ME	1/10 U	1.420	12 12	X dell	TONEG		
		PADOBBIE	K10-2-2	K2a-2	K65032	K660-3																
		KONDHHЫ ПРО- DONBHOIX POU	_	_	_	K66a33							1									
	500	Chasebore 0		_	_			UB5-1	U55-1	1155-1				19	3	3	1	7	7	17	58	56
j	1	0						11.		1			1	ll .	l		1	Ì			'	1
		Торцевые/ут.ш.	K10-1-5 K10-2-2	<u>K20-1-5</u> K20-2	K <u>6501-5</u> K6503-2	K <u>66a1-5</u> K66a-3		543-1 1155-7	5431/ 1557	5431 11557				54,55 34	48,49	48,47	43	50 24	50/24	13/29	62 58	60 56
1			K10-3-2		K6T032				1	12//			1		-						70	1 30
<i>III-1</i> V		KONOHHOI NDO- BONOHOIX POM		_	_	K68a-3-3		1	1	.]				
	1000	CBA3EBbie 0		_	_			4551	U55-2	U54-2				19	3	3	1	9	9	17	58	56
		0	-	_	_											l ·						
		Торцевые/ут.щ.	K10-3-2	K2035 K20-2	K <u>670-25</u> K670-32	K <u>68025</u> K680-2		0557	5431/ 10557	544				54,55/ 34	48,49/	44,45	43	50 24	50/24	53/29	62 58	60 56
		PADOBBIE	K10-4-2							327.7				1		<u> </u>					1 10	
		Konohmbi npo- donbhbix port	_		-	K68043		dijo.	Asi _{ng}													
	1500	Связевые 9				_		U55-1	U55-3	U54-3				19	3	3	1	9	9	17	58	56
		0							_	_												
		Торцевые/ут.ш.	K10-2-5 K10-4-2	K20-3-5 K20-3	K510-3-5 K510-4-2	K <u>680-25</u> K680-4		543-1 U55-7	5431/	6421/				74,55 / 34	48,49/	44;45/	43	50/24	50/24	53/29	62/58	50 56

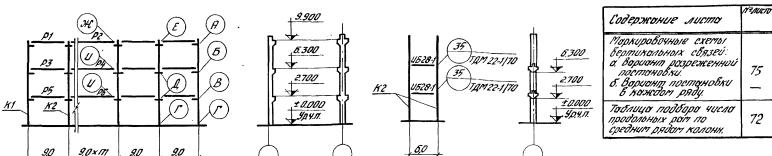
^{1.} Укозония по притенению порхировочных схет доны в паяснительной зописке стр.46-44 г. Ригели прадольных рат принитонатся па альботу ИИ23-1/10.

Μορκυροβοчноя

Μορκυροδοчноя cxema nonepeyyox pan 2-9-4 (36). схета продольной раты. i 420-12 Bunyek 0-2 Sucm

		Exemo	<i>ПСПЕ</i> РЕЧНО	OUTSI.			Exema 1	продольног	y pan	61		Γ]ε,	024241	b SUCITI	08 cn	10.50c.	70
	ł	<i>p</i> ₁ <i>y</i> (A	13,500	./ .,	NZ	74	\	ή ,	9.300	Ī		c dos	UBQETO HYBITI . UB AUC	140.17.0	CPT	enuch
	<u>K1</u>		(b) (c) (d) (d) (d)	2700 2700 2700 4000			15284 15281 15281) TILM 22-1/10) TILM 22-1/10) TILM 22-1/10 -	\$ - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5.300 2.700 10.000 92.9.11		8 EPANU 0. 800 1.001 2. 800 8 x0. Tatay	KONBH TOHOB WOHM WOOM WOOM WOOM	HISTE CX. POSPESA POSPESA NOCTIVA POSP 9.01 14.02 14.00 14.00 14.00 10 10 10 10 10 10 10 10 10 10 10 10 1		75 - 72	
מת שיני	Hapmarubhan อ้ายคยหมห	30 , 90 Тип колонн	Условные т поперечны	орки колонн п х и продольна	o exemon Sone	१ १८५५ हे	BO TOOKU OUZE YHOU POI	eneú no Cxeme noi	Yeno Cre	BH61E PME	MODKU NONEPL	. MOHN 24140Ú	TOH HB	ıx demi	ากยัง	по	
x <i>090cm</i> - ดหญ qหังอนู ยหาดช	DAUMEABHCH HURPYSKOHO NEDEKOHINIE KROSTIP	по положению в наркасе	K1 K2 Puroyue m 1.420-12	K3 K4 DOKU KUJOHH I BSIN. I	р, по серият Род ИИ.	1 1 -		18Ú 110, CEPUY x 110 1.420-1286111	9 Poctor	5 102 m	B POKU M	[] 10HITOS 1,420 -	A MHOIX 12	E 3 deman sun. 10		U rep	אטע
	500	Рядовые Колонны про- дольных рат Связевые Ф	K 501-2 K 60-2 — K 60-2- — K 60-2-	 		-1 U55-1			19	3	3	1	7	,	17 3	58	56
7~ <i>]</i>]7		Торцевые ју т.ш. Рядовые		K3025 K4025 K3032 K403	543- U55-	1 643-1 7 US5-7	543-1 U55-7		54,55 34	40,49	48,4 <i>9</i> 20	43	50 24	53	29 62	58	50
- <u></u>	1000	Калинны про- дольных рат Связевые а	K50-22 K60-2 — K60-3- — K60-2-1 — —	/ — /s80-3-1 — —		1 155-2		·	19	3	.3	1	9			58	56
-		Тарцевые/ути. Рядовые Каланны про- дальных рагі	K50-3-2 K6U-3	KTU-2-3 K80-2-5 KT0-2-2 K80-2 KT0-3-2 K80-3	<u> </u>	1 <u>543-1</u> 7 <u>U55-7</u>	U54-4		34	18,49/	44,45	43 43	50 / 24	5.	3 60	38	60
r- <i>I</i> I	1500	Вальных рам Связевые <u>а</u>	- K60-3-	- K80-4-1		1 455-3	<u>U543</u>		19	3	3	1	9		17	58	50
	1			K74-25 K80-25	543	1 543-1	5421 0544	1 !		48:49	i	1	1 1				

UHMMIPOMJOHNIM Jane


г Ригели продольных рат принитаются по ольбату ИИ 23-1/10.

Моркировочной схеть пинеречных размон.
2-9-4 (36).
Моркировочной схеть продотночной эамы.
1976 (Вариант двухэтожной разрежи каноче чижних этожек) Лист emp40.44

m=0:4

Ехета продольной раты

Перечень листов альбото, расстотриваетых совтестно с данным листом

	Нормотивния Воеменния	Тип колонн		Услова попер	IBIE MOJ RYHBIX	OKU KU U MP	DONH I	TO CXEN HOIX L	יוטוי דינטוי	Genob	HUIE M	ONDKU PYHOÙ	PUREN	94 70 L	CXEMP	SEM	78HBI	10 M	ne pe	I MO ZYHOL	UMO. Ú p	HH 61. Q 176 1.	x de	7/10/18	eŭ no	o exe	ene
	<i>длительноя</i>	по положени	10	KI	K2					PI	PZ	P3	P4	P5	PB	A	5	B	1	<i>A</i>	E	H	U	K	1	M	Г
Honopy Bernpa	HORDYSKO HO HEDEKDINTUE KRUJUP			P0004 1.42	iue moj 20-12	OKU K	ONOHH Boing	no ce yoki	epuu	P0604 UU23-2	iue moj 2/10; MO,	OKU D OYEBBI	<i>UZENEU</i> Y 1.420-	12 BB	PPUU VII. 7	Pod.	194UE 1922	MOD 1/10	KU !	70HM 1.420	10 M P 12	46/X 86)	dem n. 10	ONEU	110	сери	w
		Рядовые		K614-3-2	K620-2							1															Γ
		KONOHHUI NDO- DONUHUIX DOM		_	K62a-3-3						11061		11504		,,,,,,												
	500	[8138861E	a	_	K62a3-1					U55-1	U56-14	U55-1	<u>456-14</u> U56-14	UB51	U55-1 U56-14	19	3	3	1	7	17	18	8				İ
•			0		_					- C/2 d	220.0	-															
		Topueboje/y n	7.44.	<u> 4610-3-5</u> 4610-3-2	K <u>020-2-5</u> K620-2					1657	1661	1557	5441/ 16617	1657	544J 055-17	34	10,49	49.49 20	43	50/ 24	53/29	53/ 30	50/27]
		PADOBBIE		1810-42	KB2a-3					1	ir.																Γ
		KONDHHUI NDO-			K62a-43				<u> </u>		U56-1		İ														
<i>1-1</i> 7	1000	<i>โชคมะชิงเย</i>	O		K 82q-3-1				<u> </u>	455-1	456-14	455-2	U5615	U55-2	U56-15	19	3	3	1	9	17	18	12				
			0				L		<u> </u>	ļ																	
	<u>.</u>	Торцёвые јул	n.u.	1610-3-5 1610-42	K <u>629-25</u> K620-3	1 35			<u> </u>	165-	544-1/ 15611	15431/	5441/ 1056-17	543-1/ 1055-7	5441 US&17	14.55 34	48,49/ /20	4849/ 20	43	50/24	53/	13/30	50/	1			1
		Padobbie		1634-1-2	1640-1						2				-									† —			T
	4500	KONOHHUI NOU BONUHUIX POM	,		184043					1155-1	1156	11507															
	1500	Chasebore	a	- P	K64q-1-1		. 80				=	-	400-3	<u>U043</u>	<i>U55-6</i>	19	3	3	1	9	17	18	12				
			0						<u> </u>	-											İ						
		Topyebbie/ym	2.44.	K6301-5 K6301-2	NO4014 K640-1					1055	1561	1543-1	5441	542-1/ 1154J	543-2/ 05530	54,55	10,49	44.45	43	50/	53/20	53/20	50/	1		-	1

1 Указания по притенению таркировочных схет даны в пояснительной эстиске стольных 2. Рисели продольных рот принитанатся по стоботу UU23-1/10.

40 TK

Μυρκυροδοчния εχεπά ποπερεчных ρονή 17-9-3 (36). Μορκυροδοчния εχεπά προσοποκού ρονής. 1 420-12 Boinyek 0-2 Suem | F

Содержание листа	Nenuer
Моркировочные схеты вертикальных связей	
о, Ворионт розреженно постиновки б. Ворионт постановки в кождот Ряду	75
о пожоот рябу Поблица подбора числи продальных рот по среднит рябот колонн	7 72

$\frac{\rho_1}{\rho_3} = \frac{\rho_2}{\rho_3}$ $\frac{\rho_3}{\rho_4} = \frac{\rho_5}{\rho_6}$ $\frac{\rho_5}{\rho_6} = \frac{\rho_5}{\rho_6}$		9,900 6,300 2100 ± 4,000 59,4.7	35	221710 5.300 6.300
90 90×111 90 111=0÷4	90		50	

COCO	Нормативная Временная	Тип колонн		Yenobk nonep	IBIE ML	OKU KO	0.7.0HH 0.0.01bH	NO CXEMI HIST POM	9/7	4c1081	HOILE M	OPKU PHOÚ	DUREAL	84 NO 1	exeme	Yeni	18461	e Ma	TOKU DOED	MOR	HMOD PU ,	KH61X	del.	none	ינו אני	CXE	?me
	ADEOURNA HO	ПО ПОЛОЖЕНИ	100	KI	152	K3	K4			PI	PZ	P3	P4	P5	P6	A	5	B	1	A	E	\mathcal{H}	U	K	1	M	
ny yanopy Bempa	HOPOYIKO HO NEDEKDHINUE KEC/M ²	в коркасе		Porto 4 1.42	NUE MU 0-12.	PKU /	KONOHH In. T	по сери	w.	PO 504 4423	1UE MI 2/70; 1	OPKU HOPYE	DUZEN 861X 70	9Ú 70 1.420-1	CEDUU 28bin.7	Paga	14UE 71	[90]D 20122	KU 1	מואסת ה' ו	700H 420-	461X 12	dem Boin	0120	חס א	cept	1817
		Рядовые		K10-2-2	K20-1	K34-22	K40 1																			-	
		KONDHHU NDO- DONUHUIX DOM					K4023				U56-1		U56-1		456-1												İ
	500	CBA3EBbje	0				K401-1			U55-1	U56-14	U55-1	U56-1 U56-14	U55-1	1156-14	19	3	3	1	7	17	18	8	56	58		
	,		0										'	·													
		Topyebajelyn	7.W.	K10-2-5 K10-2-2	<u> </u>	<u>K30-25</u> K30-22	K40-25 K40-1			<u>543-1</u> 455-7	544.1 U56-17	543-1 U55-7	544-1 U58-17	543-1 U55-7	5441 458-17	54,55 34	40,49 20	10,49	V3	50/24	53/ 29	53/30	50/ 27	60/ 56	52/58		
		PAdobbie		K10-2-2																							
		KONOHHOI TOD- DONOHBIX DOI	7				140-33				11561																
I-11	1.000		0				14421			455-1	U56-14	11552	1156-15	U552	456-15	19	3	3	1	9	17	18.	12	58	58		l
		CBASEBbIE	0									1												}			
		Topyebole/y n	7.41.	K10-2-5	120-3-5 120-2	13025 13042	X4025 X40-2			543-1 1155-7	5441 1158-17	543-1	544-1 1156-17	543-1	5441 056-17	54,55/ 34	16.49 20	48,49/ 20	43	50/24	53/29	53/30	50/27	60/56	52/58		
		PADOBBIE				174-2-2						-															
	1572	KONDHHIDI TIPO-	7				184-33							ļ													
	1500	Связевые	0				K842-1			U55-1	456-1	455-3	1156-3	<i>U54-3</i>	<i>U55-6</i>	19	3	3	1	9	17	18	12	56	58	ا . ا	
,			ō						·																		
L		Topyebble/ym	7.101.	K10-25 K10-2-2	K20-3-5 K20-3	1870-2-5 1870-2-2	180-25 180-2			643-1 UB5-7	544-1 U56-11	543-1 U55-7	156-17	542-1 U54-4	6432 U55-30	34	1849	20	43	50/24	13/29	53/30	50/21	50/56	62/58	i - '	

^{1.} Указания по притенению таркиравачных схет даны в пояснительной записке, г. Ригели продольных рат принитантся по альботу UU23-1/10.

UHNURPOM3DAHNIN TO COME

Моркировочноя схеть поперечных рот 1.420-1. П-9-3 (36). Моркировочноя схето продольной роты. Гварионт дбухэтожной розрезки колонн нижних этожих Мист

1.420-12 BOITYCK 0-2

Перечень листов альбата россматриваемых совместно с данным листом

9300	15	<i>(35</i>)	9.900	Содержание листа	Nº AUCTO
6.300	<u>11528/</u> 11528/	-, TAM22-1/10 \$5\TAM22-1/70 \$5\TAM22-1/70	6.300	Μαρκυροδούμων εχεπώ δ ερπυκοπωμώς εδημεύ: α. Βαρυαμπ ραμρεχένηνού πος παμπολού . δ. Βορυαμπ πος πουδοδού δ. Κομάδοπ ροδύ.	75
‡0.000 ¥0.4.n.	<u> </u>		\$0.000 \$9.4.n.	в кажаат рягу. Таблица падопра числа прадольных рам па сред- ним рядам колонн	72

		111-0.9									•															
CCCP no	Ндамативная в ременная	TUN KOMOHI	4	Scrabi	HBIE MO	U NO	SONOHI O PONSK	H NO CXEMOM	Услов	HOIE ME	YOKU YNO G	queen pai	eŭ no	CXEME	30	186	4618 10 C	ren	OKU e n	mai	41770	WHO P	(X	demo	neu	
CROPOCHT-	ONUMENSHOS HOZOY3RO HO	по паложен в кархосе		11	12	13	154		PI			P4	_			5	В	1		E		4	5	1	M	
HONDAY Bempa	HORDYSKO HO NEDEKDIMUR KTO /M2	o noprove		Patovi	ue Map	KU KO. 1.420-1	DONH 80	no cepuu Inyck !	Pato 4 8 11125-2/7	VE MOD Organie	eux n	uzene. a 1.420	U 110 8	çepuu sın. 7	Pol	7040	e M	OPRI CEP L	U M	0 HM2 4 M2	9 sec. 11	18/X 70 u	1.42	0.12 0-12	8611	7. 16
		Padobose		R/0-2-2	F20-2	185052	1560-3																			
		ROMOHHUI MOO	7 -			_	166633			U561	4551	U56-1	1,50	U56·1	19	حی	3	/	7	7	17	ه م	~-	,		
	500	Связевые	0				566a-31		U55-1	U55-14	4237	<u>U50-1</u> U58-14	4037	U56·14	1,5	ی	ا	,		7	17	30.	30	18	8	
			8																							
		Topyebue/y	n. U.	K10-1-5 K10-2-2	K20-1-5 K20-2	1650-15 1650-3-2	N880-1-3		543-1 U55-7	544-1 U56-77	1543-1 1155-7	544-1 058-17	543-1 U55-7	544-1 056-17	54,55 34	48,49 20	48,49	43	24	24	<u>53</u>	58 58	56	53	50	1
		Padobile		N/0-3-2																						
		ROSONHOS DO	7/1		_		1680:3:3		U55-1	U56-1	1155-2	1160.14	115/1-2	UES 28	10	7	z	,	9	9	17	58	5.5			
I-1	1000	C84388618	Ø		_		168031		0007	UB6-14	0052	00010	0272	00020	,3			•		,	,,	38	30	18	12	
		C 0 7 3 E 0 0 / E	8		_				1			800			-4-5	40.60	66.60	7.0								
		Topyebose/y,	77. W.	X10-1-5 X10-3-2	120.3.5 120.2	167032	1680-25		143-1 1155-7	544-1 U55-17	U55-7	U58-17	U54-4	U55:30	34	20	20	43	50 24	50 24	<u>53</u> 29	<u>62</u> 58	50	30	5Q 27	1
		Padoboie		N10-4-2	120.3	157042	1580-4																			
		RONOHHOL MO	70 - 7M		_		1580-4:	4	UE5-1	U56:14	4553	U55-18	U54·3	45529	10	_	7	,	9	_	/~					
-	1500	CP-P.	Q		_		1.680-4-1		3.50 3.50 - 55					_	19	3	3"	7]	9	17	38	55	18	12	
1		C643e661e	8		_					<u> </u>	6/2	=111	6/0/	F/7. C	C4 50	100 /2	10.00	47	50			73	-			
L		Торцевые /у	MU.	K10-2-3	120-3-5 120-3	1670-3-5 1670-4-2	1680-4		543-1 U55-7	544-1 U.55-17	455-7	166-17	454-4	1155:30	34,35	20	23	43	24	24	29	58	56	30	50	1

^{1.} Указания по применению маркировочных схем даны в пояснительной записке стр. 40-44.

г. Ригели продольных рот принитаются по ольботу UU23-1/70.

ТК Маркировочная схема поперечных рам п-9-4(36)
Маркировочная схема продольной рамы

1.420-12 Bunyer 0-2 Niem 8

15749-01

Схета продольной раты

Tam22-1170

Tam 22-1/70

35) TAM22-1/10

9,900

6.300

2,700

± 0.000

4041

Перечень листов альбата расстатриваетых совпестно C DONHOIM AUCMOM

Содержание листа	Nº AUCT
Маркировочные схеты бертикальных связей:	
а. Варцант разреженной постыновки	75
б. Вириант постоновки в каждот ряду.	_
Таблица подбора числа продольных рат по средним рядат колонн.	
средним рядом колонн.	72

Ραύομ CCCP πο	Нормативноя временная длительная	Тип колонн	,	Условн попер	DIE MOL	אט אט אני אני אני אני אני אני אני אני אני אני	10HH 17. 10DOHO	o cxeri	יינטיי י		HUE M				exeme	¥c,						IMUS PPEYI				neú
KOPOCT-	HORPYSKO HO	по положена	סמט	KI	H2	K3	K4	,		PI	P2	ρz	P4	P5	P6	A	5	B	1	Д	E	H	U	K	1	M
нолу напору ветра	nepëkpaitue Kecim²	в коркасе		Padayı	18 MOI 420-12	OKU KO	NOHH	70 CEP.	עע	Porto4 UU23-2	ye mo	OKY D Jebbir	UZENEÚ NO 1.420	110 CE	יייטע אות. ד	POL	TOYU EDUU	e m	70KU 122-1	170	OHITI U 1:	420-1	2 B	, đem om. 1	one c	i ni
		рядовые		K10-2-2	K20-2	/165a-3-2	K 66-3																			
		KONOHHDI NPODU HDIX POM	116-			_	K664.3-3				U58-1		1150 1		11561											1
	500	связевые	a	_	_	_				1155-1		11551	U56-1	U55-1	<u>U56-1</u> U56-14	19	3	3	1	7	7	17	58	56	18	8
		CONSCOOLE	O	_		_	-			ll .		l	U56-14	ì	i		l	1								
		торцевые/у	71.LU.	K10-1-5 K10-2-2	K20-1-5 K20-2	K650-1-5 K650-3-2	K660-1-5 K660-3			543-1/ /055-7	5441	543-1 1155-7	544-1/ 1156-11	543-1	5441/	5+55 34	48.49	18.49	43/43	50/ 24	50/ 24	53/29	62/ /58	60/	53/30	50/27
		рядавые		K10-3-2								-	7 00011													
		KONOHHBI MODO HOLK POM	016-	_	_	_	K 68a-3-3				U56-1															
<i>Щ-1</i> ¥	1000		Ø	_	_					465-1	U56-14	4552	U56-15	454-2	U55-28	19	3	3	1	9	9	17	58	56	18	12
		связевые	T	·		_	1																			
		торцевые/ул	TILL!	K10-1-5 K10-3-2		K670-2-5 K670-3-2	<u>K68a-2-5</u> K68a-2			543-1/ /U55-7	544.V 1058-17	543-1/ 1155-7	544-1/ 1156-17	5421/ 11544	5432/ (15530	54.55, 34	48,49	14,45	43/43	50/ 24	50/ 24	53 / 29	62/ 58	50 56	53/30	50/27
		рядовые		K10-4-2		K67q-4-2	K680-4																			
		KONOHHOI NDOÙ HOIX POM	10/16-	_	_	_	1680-4-3																			
	1500	связевые	q							U55-1	<u>U56-14</u>	U65-3	<u>U56-16</u>	<u>464-3</u>	U55-29	19	3	3	1	9	g	17	58	56	18	12
			Ø		_	_	_					_														
		торцевые/у.	m.w.	K10-2-5	K20-3-5	K670-3-5 K670-4-2	K680-2-5			643-1/	544-1/ NE6-11	5431	5441	842-1	643-2/ /155-30	54.55	4849	1445	43/43	50/24	50/24	53/29	62/58	50/56	53/10	50/27

115281

U528-

U528-

5,0

1. Указания по притенению таркировочных схет даны в пояснительной записке стр. 40-44.

2. Ригели продольных рат принитаются по альботу ИИ23-1/10.

Маркировочная схема поперечных рам 11\\ 1976 Маркировочная схета продольной раты.

1. 420-12 Bunyek 0-2 Aucm

10

CXEMA NONEPEYHOÙ PAMBI

CXEMA ПРОДОЛЬНОЙ РАМЫ

Перечень листов альбома, Рассматриваемых савместно сданным листом

Содержание листа	Nºnucma
Маркировочная схема Вертикальных связей: а. Вариант разъеженной постановки б. Вариант постановки в каждом ряду	75 84
Паблица подбора 4 ислаг продольных рат по сред- нему рэду калунн	72

$ \begin{array}{c cccc} & & & & & & & & & & & & & & & & & & &$	13.500 8.700 3.900 ±0,000 Ур.4.7.	1528-1 35 TAM22-1/70 8.700 1528-1 35 TAM22-1/70 ± 0,000 59.4.0.000	
9,0 . 9,0	6	6,0	

CCCF 110	Нармативная Временная	Пип колонн	90.10 11000	BHBIE ME DABHBIX	APKU K	KOJOHH NO NEPEYHЫX	СХВМАМ РАМ	УСЛО!	SHWE P	OPKU E	РИЗЕЛЕЦ Рамы	і по схеме	Sen	08Hb1E	MO	e no	MOHT	0.4 P	VOIX C	7 <i>E1770</i>	элей
	- длительная Нагрузка на	по положения	O KI	K2	K3	K4		P1	P2	P3			A	5	B	1	B	E	Ж	U	K
Be/mPQ	REC/M2	в каркасе		1.42	0-12	колони 110 Вып. 2	CEPUU	Ραδοчι 11423-2	1e MGP 170,170	KU PUE PLIEBBIX	елей л 10 1.420	0 CEPUU 1-12 BBIN. 7	Pac no c	504Це ериям	MAP	KU 1 122-	10HM	0*H	61X C 20-12	ema!	1.000 117.16
		РАЙОВЫЕ	K11a-3:	k12a-3	K13a-2:	K14a-2															
		КОЛОННЫ Продольных ра	MY -			K14a-4-3		455-1	1155-1	465-1			19	3	3	1	7	2	12	58	56
	500	CEA3eBUE	a -			K140-41							'			′	,		, ,	30	56
			δ —	112n-25		K140-2-1 K140-2-5	- 	E42.1	5421	5421	 -		54.55	40 40	40 110	7/2	170	64	63		
		Mopueswe/y T.L	U. KHa-3:	K12a-3	K13023	K140-2		<u>543-1</u> U55-7	455-7	<u>643-1</u> 465-7			54,55 34	20	20	43	24	24	<u>53</u> 29	<u>62</u> 58	56
İ		PADOBNE	Klta-3	K1203	X1205-3	1 K180-2															
		Κοπομμώ Προσοπεμών ραί	n -	l		K180-2-3		1/55-1	1155-2	454-2			19	3	3	1	9	9	12	58	56
I-N	1000	CBA3e8bie	a	<u></u>		K180-2-1		1200,	2002							·			"	00	
1		CONSCORE	δ —			K180-2-1				2004			ļ.,								
		торцевые/у т. Ц	KHQ-3-5	K12a33 K12a3	K170-5-5 K170-5-3	K <u>18a-2-</u> S K18c-2		<u>543-1</u> 455-7	<u>6 43-1</u> 455-7	<u>154-4</u>			54,55 34	20	44,45 20	43	<u>50</u> 24	<u>50</u>	<u>53</u> 29	<u>62</u> 58	60 56
Ì		PAROBBIE	KII0-3:	K120-3	K170-5-	K180-3			ľ	İ											
]	KONO.4HBI NDOZONGHBIK DI	JM -			K18a-4-3		UCEA	1/55-2	<u>и64-3</u>			19	3	3	1	9	_			_ !
	1500		a -			K18a3-1		4034	-				-	_		, í	2	9	17	58	56
ļ ·		Связевые	δ			K18a31					L										
		торцевые/ут.и	KHA-3-5 KHA-3-3	K12q-3-5 K12a-3	K17a-5-S K17a-5-3	K180-3-5 K180-3		543-1 U55-7	543-1 455-7	5424 UE4-4			54,55 34	20	44,45 20	43	50 24	<u>50</u> 24	<u>53</u> 29	<u>62</u> 58	<u>60</u> 56

ПРИМЕЧАНИЯ:

- 1. YKASAHUA TO TPUMEHEHUFO MAPKUPOBOYHIX CXEM DAHII
- в пояснительной записке стр. 40-44. 2. Ригеми продольных рам принимаются по альбому ии23-1/70.

	TL
	IN
- 1	1976

Маркировочная схема поперечных рам 2-9-3 (48). Маркировочная схема продольной рамы

1.420-12 BBINYCK 0-2 Swem 11

15740-Di E

UHX OP D

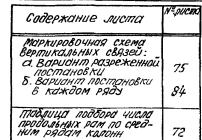
Содержание листа	Nº NUCINCI
Маркировочная схема вертикальных связей: а. Вариант разреженной постановки б. Вариант постановки в каждом ряду	75 84
Паблица подбора цисла продоленых рап по сред- нему ряду колонн	72

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.300 13.500 8.700 \$\frac{\pmu}{3.900} \$\frac{\pmu}{\sqrt{9.47n}}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
---	---	---

Район СССР по	Нортативная Временная	MUI KONOH	4	YC.NO	OBHBIE .	MOPKL X U NP	KOJ10, 0д0л61	HH MO CXE	emam n	YCM cxel	OBHBIE Me NO	Map.	KU PUG 4 HOŬ	Paneir	110					nonn 24H0		BIX DE		neŭ
	длительная наеря 3 ка на		0	KI	K2	K3	K4	1 1		P1	P2	P3				A	Б	B	P	1	E	*	//	K
ветра	nepekpumue K[c] M2			Patro	ue Mai 1.42	PO- 12	VIOHH I	no cepu	U	Pa\u00000	HUE MO	PKU P OPUESH	UZENE. X 101.420	Ŭ 10 CE	DULY	Ραδο <i>C</i> Εργ	YUE I	MOPKL AM 22	1 MOH	max 1.	H&IX -	Rema	neu i	10
	·	PAROBBIE		KI54-3-3	k16a-4	K17a-4-3	K180-2	<u> </u>			1													
		RONOHHBI RPODONBHBIX PC	YM		K160-4-3		K18d-4-3	+		U55-/	U65-I	4541				19	3	3	1	7	2	17	58	56
	500	CB93eBble	a		K160-4-1		K180-3-1							,		,,,					'	'	38	36
l			δ	K/50-3-1	K160-4-1	k170-4-1	X180-3-1			C/12./	C/12 1													
		Mopuesve/y	т.Ш.	K/SQ-3-3	k16a-4-S	K <u>Ma-4-3</u> KM a-4-3	<u> </u>			<u>543-</u> / 4 55- 7	6 <u>43-1</u> 455-7	<u>542-1</u> 464-4				5 <u>4,5</u> 5 34	48,49	20	43	50 24	<u>50</u> 24	<u>53</u> 29	62 58	56
		РЯдовые			K16a-4													~					-	الثا
		KONOHHUI NPODONOHUX PO	ME		K160-4-3		K18a-4-3			"EE"	400	454.0		}			ذ. ا	3	,					1
<u> </u>	1000	связевые	d		K160-4-1		K180-4-1			4657	455-2	4-2				19	3	ی	,	9	9	17	56	56
	,	COASCOME	δ	K/5a-3-1	K160-4-1	K170-5-1	K180-41			L											4			
		Порцевые/у	r.W.	K15013-3	K160-4-5 K160-4	K170-5-5	K180-3-5			543-1 455-7	543-1 U55-7	15424				54,55 34	48,49 20	44,45	43 43	50 24	50 24	53 29	62 58	60 56
		Рядовые			K160-4											39	20	20	70	<u> 69</u>	24	29	38	56
		ROMOHHAI MODOJAHAN PO			K160-4-3		K180-5-3	1 1	•		1165-3	454:3					_		,			_		
1	1500	Связевые	a		1	_	1			4551						19	3	3	1	9	9	17	58	56
		COASCAPIE	5	K150-4-1	K160-4-1	K17a-5-1	K180-5-1					1										l		
		торцевые/ут	7///	K150-4.5	K160-4-5	K170-5-5	K180-5-5			543-1	543-1 U65-7	542-1				<u>54,5</u> 5 34	48,49	44,45	43	<u>50</u>	50 24	<i>53</i> <i>29</i>	62 58	60
L	<u> </u>	7.7.		K13043	K160-4	1/10 3 3	14100-3			WB3-1	U05-7	404-4				34	20	20	43	24	24	29	58	56

ПРИМЕЧАНИЯ:

- 1. Указания по применению маркировочных схем даны в пояснительной запискестр.40-44.
 2. Ригели продольных рам принимаются по альбому ии 23-1/70,


TK	
1976	

Маркировочная схема поперечных рам 2-9-4 (48). MOPKUPO BOYHOG CXEMO NPODOJOHOU POMBI

1.420-12 BUINYCKO-2

Схема продольной рамы

Перечень листов альбома РОССМОТРИ ВОЕМЫХ СОВМЕСТНО С ДОННЫМ ЛИСТОМ

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.500 8.700 3.900 ±0,000 ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
9,0 9,0 9,0 9,0 M=0÷4		60

CCCP NO	Нормативная Временная	MUN KOJOHA	4	УСЛОВ ПОПЕ	HOIE ME PEUHOI	OPKU K	OJOHH MO	o cxe	MOM M	Услов	BHbIE I	MOPKU PEYHO	PUZEA U PO	EŬ NO	схеме		108H							021	nas	eŭ
	वैजायामस्मा६भवान भवरम्प्रअक्षेत्र भव		110	K/	K2.	K3	K4 '	_]		PI	P2	P.3	P4	P5	P6	A	5	В	17	A	Ē	*	4	K	1	M
Ветра	перекрыпие КГС/м2	в каркасе		Paso	142 1.42	O-12	KOJOHH . Bain.	no ce	PUU	Pαδο UU23-2	44e 1	ndPKU npueen	PUZEJ IX NO 1.4	neij n. 20-12	CEPUU :	Pag	504U 0 ce	e Mi	OPKU VI TA	1 MO	HMC -1/70	XXHD S 1.	11X 0	eme	BUI	2.10
		PADOBNE		KH0-3-3	K120-3	K13a-2-3	K14a-2								1									T	7	
	1	KOJOHHAI RPOBOJIBHAIX P	an				K140-4-3			11001	U56-1	,,,,,,	U56-1	l	1156-1		_	_		_	_		_	_		
	500	связевые	a				K14a-4-1]		465-1	45614	U55-1	U 56-14	1155-1	U56-14	19	3	3		7	7	17	58	56	18	8
1		CONSCORE	δ		_		K140-2-1						l												- 1	
		Mopusessie /y	T ///	KHa-3-5	K12a-3-S	K136-2-5	K140-2-5			543-1	544-1	<i>543-1</i>	<u>544-1</u> 456-17	<i>543-1</i>	544-1	54,55	48,49	48,49	43	50	50	53	62	60	53	50
			_	KIM-3-3						U65-7	466-17	U65-7	456-17	U55-7	456-17	34	20	20	43	24	24	29	58	56	30	27
		Рядовые		KH0-3-3	K120-3	K170-5-3	K18a-2							[l						ļ	- 1		Ī	
1		КОЛОННЫ Продольных ра	TM		<u> </u>		K18a-2-3]		U55-1	U56-1	1156-2	U5 6-15	115112	1156.00	10	3	3	,	9	9	17			18	12
<u>T - IV</u>	1000	080:	a				K18a-2-1			0057	456-14	4052	00070	004-6	20028	13]]	3	'			"	58	56	"	12
		CBABEBBIE	8			K17a-5-1	K180-2-1							1								- 1	- 1			
	1	Man in Pun I i		K#10-3-5	K120-3-5	K17a-5-5	K180-2-5			543-1	544-1	543-1	5441 466-17	5421	543-2	54,55	48,49	44,45	43	50	50	53	62	60	53	50
1		MopueBNE/Y 1.	щ.	K110-3-3						455-7	U5647	455-7	466-17	464-4	UB5-30	34	20	20	43	24	24	29	58	60 56	30	27
	1	<i>Рядовые</i>		KHa-3-3	K120-3	K170-5-3	K180-3							ļ			li									\neg
		KOJIOHHII NDODOJEHIIX PO	am .	Ī			K18a43			1155-1	U56-I	<i>U55-3</i>	<u>U66-3</u>	1154-3	1155-6		,	,				,,,			,,	
	1500		a				K18a-3-1	Ī				==		_		19	3	3	1	9	9	17	58	56	18	12
		CBA3e8bIE	δ			K170-5-1	K18a-3-1									l		.				1	ļ	1	ļ	
1		man source /u.s	· · · ·	K110-3-5	K12a-3-5	K17a-5-S	K180-3-5			543-1	544-1	543-1	5 44-1 U56-17	6 42-1	543-2	5 4,5 5	48,49	14,45	43	50	50	53	62	60	<u>53</u>	50
L		<i>торцевые /у Т</i>	ι.ω.	K#a-3-3	K12d-3	K17a-5-3	K180-3			<i>U55-7</i>	US 6-17	465-7	V56-17	11544	4i E 5-30	34	20	20	43	24	24	29	58	60 56	30	27

PRUMEYOHUA:

1. Указания по применению маркировочных схем даны

в пояснительной записке стр. 40-44. 2. Ригели продольных рам принитаются по альбому ИИ23-1/70.

TK	МОРКИ РОВОЧНОЯ СХЕМО ПОПЕРЕЧНЫХ РОМ П-9-3 (48).	1.420- BUNYO	
1976	Марки Ровочная схема продольной рамы	Sucm	13

C'XEMO PODOMEHOU POMBI

Перечень листов альбома. PACCMAMPUBARMON COBMECTINO C DAHHOM JUCTOM

Содержание листа	Nº JUCINO
Марк::p0804ная схема вертикальных связей: а. Вариант разреженной постановки б. Вариант постановки в каждот ряду	75 84
ПОблица подбира числа продольнух рам по сред- ним радам колонн	72

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.300 13.500 8.700 3.900 ±0,000 Jp.4.71.	K2 1628-1 35 TAM22-1/70 13.500 18.300 18.300 18.300 18.300 13.500 13.500 13.500 13.500 13.500 13.500 13.500 13.500 13.500 13.500 13.500 13.500 13.500 13.500 13.500 13.500
$g,0$ $g,0 \times m$ $g,0$ $g,0$ $g,0$	5 6	5,0

CCCP NO	Нармативна Временная	CO. L.	Условные м поперечный	MAPKU .	колонн Родольн	TO CXEM	n N		BHBIE ONEPE				cxeme				IDPKL					ema.	лей	\neg
	д лительная Нагрязка на Перекрытие КГс! м 2	по положению	KI K2 Pa604UE M 1.42	K3	K4 KOJOHH BN	, 1 110 CEP C	ואנו	PJ Pa804 III/23-	P2 14e Mai 2/70, 1	P3	P4 Jeenei	P5	P6	A Pa	5 5040	B	P GPKU M 22	MOR	E	* KHBIX	U	К	1 100	M
	JAVEY ME	PAROBEIE	K15a-3-3 K16a-4					2020	1		1	120 12 8	1			7 /2		-///	, ,	.420	-/2	1	10. /	4
	500	RONOHHAI DOM	K16a-4-3		K18a-4-3 K18a-3-1			455-1	<u>U56-1</u> U56-14	U65-1	<u>U56-1</u> U56-14	U54-1	U55-4 U65-27	19	3	3	1	7	7	17	58	18	8	56
	350	$CB93eBble \delta$	K15a-3-1 K16a-4-1	X170-41	K180-3-1				ļ															
		ППорцевые у/т.ш.	K <u>15a-3-</u> 5 K1 <u>6a-4-</u> S K15a-3-3 K16a-4	K170-4-3	K180-2			<u> 543-1</u> U55-7	<u>544-1</u> 456-17	<u>643-1</u> U55-7	<u>544-1</u> U56-17	<u>542-1</u> U54-4	6 <u>43-2</u> 455-30	34 34	4 <u>8,49</u> 20	4 <u>4,45</u> 20	43 43	<u>50</u> 24	<u>50</u> 24	<u>53</u> <u>29</u>	<u>62</u> <u>58</u>	53 30	50 27.	60 56
		РЯдовые Колонны Продольных рам	K15a-3-3 K16a-4 K16a-4-3		K18a-4-3				IJ56-1		,													
T-IV	1000	Связевые а	K16a-4-1		K18a-41			U55-1	U56-14	1165-2	U56-15	U54-2	U55-28	19	3	3	/	9	9	17	58	18	12	56
		Морцевые/у т. ш.	K15a-3-1 K16a-4-1 K15a-3-5 K16a-4-3	K170-5-5	K180-3-5			<i>543-1</i>	544-1	<u> 643-1</u>	544-1	642-1	5 <u>43-2</u> U55:30	54,55	48,49	44,45	43	50 24	50	53 29	62	53 30	50	60
		Рядовые	K15a-3-3 K16a-4 K15a-4-3 K16a-4					ub 3 -7	456-17	<i>Ub5-7</i>	466-17	454-4	U55-30	34	20	20	43	24	24	29	<u>58</u>	30 2	27	56
		KONOHHU NDOJONGHUIX PAM	— K16a-4-3	1	K180-5-3			465-1	456-14	465-3	U56-16	464-3	И <u>Б5-2</u> 9	10		,	. [,,	-0	10		
	1500	Связевые а	<u> </u>					4057	_			=		19	3	3	1	9	9	17	58	18	12	56
		Порцевые/у.т.ш.	K150-4-1 K160-4-1	K1745.5	KIRNER			543-1 1155-7	5 44-1	643-1	544-1 156-12	542-1 1511-1	<u> 543-2</u> U55:30	54,55	48.49	44.45	43	50	<u>50</u> 24	<u>53</u>	62 58	53 2	50	60

Примечания:

1. Указания по применению маркировочных схем даны в пояснительной записке стр 40-44. 2. Ригели продольных рам принимаются по альбому ии23-1/70.

Маркировочная схема поперечных рам П-9-4 (48). МАРКИРОВОЧНАЯ СХЕМА ПРОДОЛЬНОЙ РАМЫ

1.420-12 BWINYCK 0.2 Sucm

Схема продольной Рамы

Перечень листов альбома. рассматриваемых совтестно с данным листом.

Содержание листа	W ² DUCMA
Маркировочная Схема вертикальных связей: сі. Вариант разреженной лостановки б. Вариант постановки в кажаом ряду	75 84
TTIATUUG NOATOPA YUCNA NPOATONEHEIX PAM NO CPEA- HEMS PRAS KUJOU H	73

$ \begin{array}{c cccc} PI & & & & & & & \\ \hline KI & & & & & & & & \\ \hline KI & & & & & & & & \\ \hline P2 & & & & & & & \\ \hline P3 & & & & & & & \\ \hline K3 & & & & & & & \\ \hline K4 & & & & & & & \\ \hline P3 & & & & & & & \\ \hline K4 & & & & & & & \\ \hline P3 & & & & & & & \\ \hline K4 & & & & & & & \\ \hline P3 & & & & & & & \\ \hline K4 & & & & & & & \\ \hline P3 & & & & & & & \\ \hline K4 & & & & & & & \\ \hline P3 & & & & & & & \\ \hline K4 & & & & & & & \\ \hline P3 & & & & & & & \\ \hline K4 & & & & & & & \\ \hline P3 & & & & & & & \\ \hline K4 & & & & & & & \\ \hline P3 & & & & & & & \\ \hline K4 & & & & & & & \\ \hline P3 & & & & & & & \\ \hline K4 & & & & & & & \\ \hline P3 & & & & & & & \\ \hline K4 & & & & & & & \\ \hline P3 & & & & & & & \\ \hline K4 & & & & & & \\ \hline P3 & & & & & & & \\ \hline K4 & & & & & & \\ \hline P3 & & & & & & \\ \hline K4 & & & & & & \\ \hline P3 & & & & & & \\ \hline P3 & & & & & & \\ \hline K4 & & & & & & \\ \hline P3 & & & & & & \\ \hline P3 & & & & & & \\ \hline P3 & & & & & & \\ \hline P3 & & & & & & \\ \hline P3 & & & & & & \\ \hline P3 & & & & & & \\ \hline P3 & & & & & & \\ \hline P3 & & & & & & \\ \hline P3 & & & & & & \\ \hline P3 & & & & & & \\ \hline P3 & & & & & & \\ \hline P3 & & & & & & \\ \hline P3 & & & & & & \\ \hline P3 & & & & & & \\ \hline P3 & & & & & & \\ \hline P3 & & & & & & \\ \hline P4 & & & & & & \\ \hline P3 & & & & & \\ \hline P3 & & & & & \\ \hline P4 & & & & & \\ \hline P3 & & & & & \\ \hline P3 & & & & & \\ \hline P4 & & & & & \\ \hline P3 & & & & & \\ \hline P3 & & & & & \\ \hline P4 & & & & & \\ \hline P3 & & & & & \\ \hline P3 & & & & & \\ \hline P4 & & & & & \\ \hline P3 & & & & & \\ \hline P3 & & & & & \\ \hline P4 & & & & & \\ \hline P5 & & & & & \\ \hline P3 & & & & & \\ \hline P4 & & & & & \\ \hline P5 & & & & & \\ \hline P3 & & & & & \\ \hline P4 & & & & & \\ \hline P5 & & & & & \\ \hline P5 & & & & & \\ \hline P5 & & & & & \\ \hline P5 & & & & & \\ \hline P5 & & & & & \\ \hline P5 & & & & & \\ \hline P5 & & & & & \\ \hline P5 & & & & & \\ \hline P5 & & & & & \\ \hline P5 &$	9.900 5.100 ±0.000 Np.4.n.	K2 35 TAM2. K4 U528-1 35 TAM2.	9.900 9.1/70 5.100 ± 0.000 ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬
9.0 9.0	6	, 6,0	

GCCP 110	Нормативная временная Длительная	Пип колонн	- 11	SCAOB!	ONG HOLD	OPKU K	COJOHH DREPEYHI	110 CXEMON	y you	BHNE	MOPKU	PUZEJ. POMbi	1811 10	cxeme		OBHBIE O CXE					HAIX C	en a	veŭ
	HOPPY3KA HA	по положения	11	KI	K2	K3	K4		PI	P2	P3				A	5	B	1	B	E	*	U	K
ветра	Перекрытие КГС/м²	в каркасе		Paso	44e m 1. 420-	OPKU 1 -12	KOSTOHH 1 BB117.	no cepuu 2					rŭ noc 420-le		Pab 0	OYUE EPUAN	MOP 1 TA	KU M 8M 22	OHMO -1/70	0, 1.4	X 20-12	MOS	eŭ 17-10
		PADOBbIE		KHd-3-3	K12a-3	K210-23	K220-3											T					
		КОЛОННЫ раг	rs				K22043		1,55						19	3	3.	1	7	7	12	~	
	500	Связевые	a				K220-4-1		ויכפע	005-7	455-1				19	3	J.	′	′	′	"	58	56
			8		V12~ 25		K220-3-1 K220-3-5		1000	1	1-1131		-					L					
		<i>Морцевые /у т.</i>	ω .	KHa-3-3	K120-3	K20-2-3	K22a-3		<i>643-1</i> <i>1155-7</i>	U55-7	1543-1 1155-7				34,55	48,49 20	48,49	43	<u>50</u>	<u>50</u>	<u>53</u> 29	<u>58</u>	60 56
		Рядовые		KHO-3-3	K12a-3	k23a-5-	K24a-2			-	-				37_	- 20	-20-				29	30	30
		KONOHHII MPODONEHIIX POI	u				K2402-3																
<u>I - IV</u>	1000	Of a colum	a				K24C121		455-1	U55-2	454-2		1		19	3	3	1	9	9	17	58	56
		Связевые	8				K240-2-1		1		I					ĺ				ĺ			. 1
		Порцевые /у Т.	111	K110-3-5	<u>K12a-3-S</u> K12a-3	K230-5.	K240-2-S		543-1	543-1	542-1				54,55	4 <u>8,49</u> 20	44,45	43	50 24	<u>50</u> 24	53 29	62	60
		PAROBBIE			k12a-3				455-7	U55-7	454-4	 	 		34	. 20	20	43	27	24	29	58	56
		KONOHHBI NDOBONGHBIX POM					K240-4-3		1		1,54,5		1										. !
	1500		a				K240 3-1		1155-1	165-3	<u>U54-3</u>				19	3	3	1	9	9	12	58	56
1		Связевые	8			K23a5-1	K240-3-1		1]			,								
	,	Порцевые/у Т.	ш.	K#0-3-5	K <u>12a-3-</u> S K12a-3	K23a-5-S K23a-5-S	K240-3-5 K240-3			543-1		ļ		1	54,55	48,49	44,45	43	<u>50</u> 24	<u>50</u> 24	<u>53</u> 29	62 58	60 56
	·	<u> </u>		,., 0 0	Y				U65-7	U55-7	U54-4	L	ــــــا		34	20	20	43	24	54	29	58	56

Примечания:

1. Указания по применению маркировочных схем даны в пояснительной запискестр.40-44. 2. Ригели продольных рам принимаются по альбому ии23-1/70

Маркировочная схема поперечных Рам 2-9-3 (60,48). Маркировочная схема продольной Рамы

1.420-12 BUTYCK 0-2

Перечень листов альбама, Расстатриваетых совместно с данным листом

Содержание листа	NºAUCIDO
Маркировочная схема верпикальних связей: а. вариант разовженной постановки Б. вариант постановки в каждот ряду	75 84
Madauua roddopd yucha Roddonehiix pam no cred- Hemy PAOY KONOHH	73

$ \begin{array}{c cccc} & & & & & & & & & & & & & & & & & & &$	19.500 14.700 9.900 5.100 ± 0.000 J. J. J. J. J. J. J. J. J. J. J. J. J. J	35 TAM 22-1 70 19,500 14,700 14,700 14,700 15,100 10,528-1 14,700 14,700 15,100 15,100 10,528-1 10,500
9,0 30	\bigcirc	1 ⁵⁵ -1

Pation CCCP NO	НОРМОТИВНАЯ Временная	Пип колоні	,,	YC.100	BHBIE M	U APO	KONDHH DOONGHB	NO CXEMO X POM	IM 50	108	BHNE P	MOPKU PEYH	PUZEJ OŬ PU	neŭ no ambi	СЕРЦИ	yene no e	ПОВНЫЕ МАРКИ МОНТАЖНЫХ ДЕПАЛЕЙ СХЕМЕ ПОПЕРЕЧНОЙ РАМЫ											
	длительноя	TO MOJOXENO	′ '	KI	1 82	K3	K4	′		7/	P2	P3				A	5	В	17	1	E	X	U	K				
MY HONOPY BEMPA	HOEPY3kd HO Deperpumue K [c] m 2	6 Kapkace		!	/ . /		КОЛОНІ Выі	н по сер 7. 2	UU PO	0040 3-2/	ue Mar 170, mo	KU PU DUSEBW	елей (110 1.4	110 CEP 420-12	บ น อพก.7	POSt PURI	YUE TA	MOPKO M 22	1/70 -1/70	max	HBIX 0	∂ema) - 12	10 II 100 12 11 17	ce-				
		PAROBBIE		K1503-3	K1601-4	K23a-4-3	K240-2			Ī									l									
		NONOHHAI NOODOABHAIX PO	iM		K160-4-3		k24a-4-3			5-1	U65-1	11511 1				19	3	3	,	7	77	17						
	500	Связевые	a		K16a-4-1		K240-3-1			۱ '	203-7	ab 4-1				/5	ر	٠.	′	′	′	′′	58	56				
	300		δ	K15a-3-1	K160-4-1	1230-4-1	K240-3-1			, ,	6740					00 -5												
		Mopueswe/y -	т.ш.	K/5a-3-3 K/5a-3-3	K160-4-S	K230-4-S K230-4-3	K240-2.5 K240-2		54. U.S.		<u>543-</u> / U55-7	<u>642-1</u> U54-4				54,55 34	4 <u>8.49</u> 20	44,45 20	43	$\frac{50}{24}$	<u>50</u> 24	<u>53</u> 29	<u>58</u>	<u>£0</u>				
		Рядовые			K160-4					- 1																		
		КОЛОННЫ Продольных ро	1M		K16a-4-3		K240-4-3		115	55-1 455-2		11542			19	10	3	3	1	9	S	,,,						
<u> I - IV</u>	1000	Связевые	a		K160-4-1		K240-4-1			, l	2002	0072				19	٦	١	1			17	58	56				
<u> </u>		COASCODIE	δ	K15a-3-1	K160-4-1	K230-5-1	K240-4-1											l)				
		торцевые/у		K <u>/Sa-3-</u> S K/Sa-3-3	k160-4-5	K23a-5-5 K23a-5-3	K24a-3-5			3-/ 5-7	<u>543-1</u> U55-7	642-1 U54-4				54,55 34	48,49 20	44,45	43	50 24	<u>50</u> 24	<u>53</u> 29	<u>62</u> <u>58</u>	60 56				
		РЯДОВЫЕ		K15a-4-3	1	<i>K23a-5-</i> 3	K24a-5			\neg								-		,		25	38	35				
		КОЛОННЫ ПРОДОЛЬНЫХ РО	JM .		K16a-4-3		K240-5-3		116		<u>иб5-3</u>	<i>U54-3</i>				0	3	,	,	9	9							
	1500	Связевые	a						- 42							19	3	3	1	9	9	17	58	56				
	,,,,,	CONSCORE	δ	KISA-4-1	K16d-4-1	K23a-5-1	K240-5-1								`													
		Порцевые/у т	·w.	K150-4-5 K150-4-3	K16a-4-5 K16a-4	K23a-5-S K23a-5-3	K24a-5 K24a-5		. 54. 1158	3-/ 5-7	<u>543-1</u> 465-7	542-1 U54-4				54,55 34	4 <u>8,49</u> 20	44,45 20	43	<u>50</u> 24	<u>50</u> 24	<u>53</u> 29	<u>62</u> 58	60 56				

ПРИМЕЧАНИЯ:

- 1. Указания по применению маркировочных схем даны в пояснительной записке стр. 40-44. 2. Ригели продольных рам принитаются по альбому ии23-1/70.

TK	Mapke
111 1976	Marku

UPOBOYHOA CXEMO NONEPEYHIIX POM 2-9-4 (60,48). ировочная схема продольно**й** Рамы

1.420-12 BUNYCK 0-2 Sucm

Схема продольной рамы

Перечень листов альбома.

Содержание .	rucina N° jiueni
Маркировочная вертикальных с а. Вариант розы поста новки б. вариант пост в каждом ря	ВЯЗЕЙ: РЕЖЕННОЙ
Masnuya nadsor Neodonshing pair n Hum pasam Kond	7 4UCAO 0 C,288- 73

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.900 \$5.100 \$9.94.0.	$\frac{K2}{16281} = 35$ $\frac{35}{74M22-1/70} = 9.900$ $\frac{35}{74M22-1/70} = 5.100$ $\frac{\pm 0.000}{5.49.4.0}$
9,0 9,0×m 9,0 9,0 m=0÷4	7 1	6.0

CCCP NO	Нармативная временная длительная	Пил колонн	Условные м поперечн	APKU KOJO BIX LI NPOD	HH 110 CXEM OJIGHOIX PO	IM IM		BHWE M Onepe				СХЕМВ	90s			OPKL NONE					mas	eŭ i	no
MY HAMOPY	HASPRING HA	по положению	KI K2	<i>t</i> 3	K4		P1	P2	₽3	P4	P5	P6	A	5	В	P	4	E	*	U	K	57	M
ветра	nepekpumue k[c] m 2	в каркасе	1.5	20-12	ЛОНН ЛО CO ВЫЛ 2	e Puu	Ραδο 0023-2	44E M	APKU OUEBNX	PUZEA6 110 1.46	20-12	Bun.7	Pai cep	OYUE	TAM.	79KU 22-1	170,	HMC'	X Hb1	12 O	emo Bbi	neb n.10	70
		PADOBNE	KIIQ-3-3 KI2a-3	k210-2-3 K2	20-3						Γ							7	T			i	\neg
I		КОЛОННЫ ПРОВОЛЬНЫХ РОМ		K2	20-4-3		l	U66-1		U56-1		456-1				,	_	_		-			
	500	CBA3eBbie d			20-4-1		4057	1166-14	1165-1	U56-14	U55-1	456-14	19	3	3	7.	7	7	17 .	58	56	10	8
	300	5		K210-3-1 K2							}	, i				- 1	-		1	1	}		
}		Mopuesue/y T.W.	KHa-3-5 K120-3				543-1	<u>544-1</u> U56-17	543-1	544-1	<i>543-1</i>	544-1	<u>54.5</u> 5	48.49	18,49	43	50 24	50 24	<u>53</u>	62 58	56	53 30	50
1		Рядовые	kfa-3-3 K12a-3				455-7	466-17	<i>UE5-7</i>	U56-17	<i>U55-</i> 7	U56-17	34	20	20	43	24	24	25	58	56	30	22
		КОЛОННЫ продольных рам			246-2-3			11501										}					
<u>I - 1V</u>	1000	agazagua a	— —	K2	4a-2-1		1///	U56-14	455-2	466-15	454-2	455-28	19	3	3	1	9	9	17	58	5.6	18	12
		CBA3EBbIE 8		K23q-5-1 K2				UD 6-14								}							1
1		торцевые/у т.ш.	K110-3-5 K120-3		4a.2-5		543-1	544-1	543-1	544-1	542-1	<i>543-2</i>	54,55	48,494	4,45	43	50	50	53	62	60 56	53	50
•		PADOSHE	KIIa-3-3 KI2a-3				U55-7	544-1 U56-17	U65-7	U5 6-17	454-4	U55-30	34	20	20	43	24	24	29 .	58	56	53 30	27
1		KOJOHHI	MICTO-3 MIZO.		4a-4-3				1								- 1	ļ					Ì
I		продольных рам						456-1	4 <u>65-3</u>	466-3	454-3	465-6	19		3	,	9	9	17	58	56	18	10
1	1500	CB93eBNE 0			40-3-1		U554	_	_	_	-	-	19	3	3	7	9	2	"	~ "	~	"	"
I		δ		K230-5-1 K2	40-3-1					1					- 1		1	1		1			1
1		Порцевые/у т. W.	Kfla-3-5 K12a-3 Kfla-3-3 K12a-3	-5 K23a-5-5 K2	240-3-3		543-1	644-1 466-17	543-1	544-1	642-1	643-2	54.55	48,49	14,45	43	50	50 24	53	62	56	53 30	50
		7.7. 2.7, 0 11.00.	INIOS S PUZDE.	precon-J Opre			455-7	466-17	U65-7	U56-17	454-4	465-30	34	20	20	43	24	24	29	58	56	30	27

ПРИМЕЧАНИЯ:

- 1. Указания по применению маркировочных схем даны в пояснительной записке стр. 40-44
 2. Ригели продольных рам принимаются по альбому ии23-1/70.

ı	71/
ļ	IK
- 1	TT
1	1976

MAPKUPOBOYHAR CXEMA NONEPEYHBIX PAM П-9-3 (60,48). Маркиро вочная схема продольной рамы

BUNYCK 0-2

1.420-12

Œ,

9,0

(E)

Ú

 \mathcal{P}

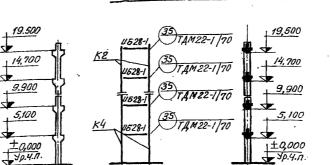


Схема продольной рамы

Перечень листов альбома. PACCMATTPUBALEMBIX COBMECTINO C CANHOLM SUCTION

Содержанце листа	Nº Juand
Мархировочная схема верпикальных связей: сі. Варцант разреженной постановки б. Варцант постановки в каждом ряду	75 84
MATTION THE TRANSPORT OF THE PROPERTY OF THE P	73

Район	Нормативная		Условные марки ка	олони по ехеман		OBHNE M		PUREMENT		хеме	4c	108HB	IE M	apku 10	MOHI	naxi	461X	дe.	mas.	reŭ
CKOPOCITIHO-	временная дастольная	ПИП КОЛОНН ПО ПОЛОЖЕНИЮ	поперечных и Пі кі к2 к3	K4	PI		P3	P4	P5	P6	A	6	B	7 1	onep		11	1	1	M
МУ Напору Ветра	нагрузкана перекрупие КГС/м²	Α.	Рабсчие марки М 1. 420-12	олонн по сери	u Pal uuzs	Гочие м 2/70, тор	OPKU F ULEBAIX	00 1.42	1 noc 0-12 8	epuu- un.7	Pa	бочив серв	P ME	JPKU TAM	MOH 17	7773-4	A/X	nem.	MADI	17.00
		Рядовые колонны	K15a:3:3 K16a-4 K23a-4:3	K24a-2 K24a-4-3		<i>1166-1</i>	WCC /	U56-1	ויכוניו	<u>U65-4</u>	19	.3	3		7 7	177			10	
	500	Продольных рам Связевые — —	71700 .0	K24a-3-1	<i>U55</i>	U56-14	U55-1	456-14	404-1	455-27						''	38	56	18	8
		Порцевые/у т.ш.	K15a-34 K16a-4-1 K23a-4-3 K15a-3-3 K16a-4-5 K23a-4-3 K15a-3-3 K16a-4 K23a-4-3	k <u>24a2-5</u> k24a2-5	5 <u>43</u> U65	1 <u>644-1</u> 7 466-17	543-1 U65-7	544-1 U56-17	<u>542-1</u> U54-4	<i>543-2</i> <i>U65-</i> 30	54,55 34	4 <u>8.49</u> 20	4.45 20	43 5 43 2	0 <u>50</u> 4 <u>24</u>	53 29	62 58	60 56	53 30	<u>50</u> 27
		PADOBNE KONDHHDI	K15a-3-3 K16a-4 K23a-5-3			456-1	1155.0	U 56- 15	1154.2	115-5-20	19	3	3		9 9	40				12
I-17	1000	продольных рам СВязевые	K/6a-4/	K240-41	UES	U56-14	2005-2	00073	2700	22520	,5				9 9	"	38	56	18	12
		Mopuelwe/yT.W.	KISa-3-1 KI6g-4-1 K23a-5-1 KISa-3-5 KI6a-4-5 K23a-5-5 KISa-3-3 KI6a-4 K23a-5-3	k24a-35 K24a-3	5 43- 455-	1 544-1 7 U56-17	<u>543-1</u> 055-7	544-1 066-17	542-1 454-4	543-2 U55-30	54,55 34	4 <u>8,49</u> 4 20	4,45	43 5 43 2	0 50	<u>53</u> 29	62	60 56	<u>53</u>	<u>50</u>
		PADOBWE KONOHHU	K15a-4-3K16a-4 K23a-5-3	k24a-5	_						_					T				
	1500	TOODONGHUX POM	K/6α-4-3	K24a-S3	UE5	4 456-14	<u> </u>	<u>U66-16</u>	<u> </u>	46529	19	3	3	1 3	7 9	17	58	56	18	12
		CBA3EBBIE 8	KISa-4-1 KI6a-4-1 K23a-54	K24a-S-1					FIG.	6/2 2	<i>eli</i> ed	Va Ca	77.70							
		Морцевые/ут.ш.	K15g-4-5 K16a-4-5 K23g-5-5 K15a-4-3 K16a-4 K23g-5-3	K24a-S	1/55	-1 <u>644-1</u> -7 U56-17	043-1 U55-7	U56-17	042-1 054-4	043-2 U5530	24	20	20	43 2	4 24	53 29	<u>62</u> 58	60 56	<u>33</u>	50 27

Примечания:

- 1. Указания по применению маркировочных схем даны в пояснительной записке стр. 40-44. 2. Ригели продольных рам принимаются по альбому ии 23-1/90.

Маркировочная схема поперечных рам 17-9-4 (60,48). Маркировочноя схема пробольной рамы

1.420-12 BUNYCK 0-2 Лист

			Exemo no	перечі	HOÚ P	01161	_		. Exi	ema ,	прадг	ОЛЬНО	rý p	OM61		بر	Nep e nocem	E4EHS WITDU ? DWH.	5 AUI 18029 14619	emob voix suci	0.150 0.051 0.001	ર્ગ છે. ૧૯૯૧માં મહ	64
			(H)	\mathcal{A}		17.100	0		452	35	70012	2 1/70	, -	17.100			Code	ержи	YHUE	AUC.	מחמ	Nº/	NUCTO .
		<u>KI</u>	$ \begin{array}{c c} \rho_{1} \\ \hline \rho_{2} \\ \hline \rho_{3} \end{array} $ $ \begin{array}{c c} K_{1} \\ \hline \rho_{3} \end{array} $ $ \begin{array}{c c} K_{2} \\ \hline \rho_{3} \end{array} $	(y) (b) (B) (f')	}	5.10U			<u>10628</u>	33	ת מות הליים ביים ביים ביים ביים ביים ביים ביים	2-1/70	-				o. Boj nge t. Boj t. B	१५४५) १८४५ १८४५	n pas Bru. n nov n pr	g pesic VNOH PDY	EHHO OBKU	8	1
		1	90 , 90	Ŭ	+	7			5,0					Z *******			c,oedn	ierry p	वेशवेषु ।	*0/10A	44.	17	4
S S S S S S S S S S S S S S S S S S S	POUOH	Нормаливния Впетенна в	Тип калонн	Условн	bie mojok	V KONO	OHH TO EXEM	10/7	4c1081	Ible MO	OKY DE	122184	ne exe	PME	9010	Вные	174,01	KU MU	THIT QU	KH DI	x de	TONEL	7
OHO DANO	CCCP NO CKOODEM-	No. No.		F																			
10 10 10 10 10 10 10 10 10 10 10 10 10 1	HOMY HOMDOY Bemon		b raprace	P00040	112 MAJOK	KU KON	ONH TO CEPT	UU	P0004 4423	UP 170	1.420-	128184	DO LED	מפנט	POOL	19UP	MODKE	U MO1	4/11QH		demi	YADII	770
12/2/3			Радовые										1	Î	11,00	T	<u> </u>	7,7,0		72	0011	1401516	7
12329			KONOHHAI MOODONAHAIX DOM		K 26a-1-3	/	K30a-1-3		U55-1	1155-1	1154-1				10	7	3	1	7	~	ا - ر		
1 3 5 9		500														· .		ĺ	<i>′</i>		//	30	56
300	7 77			K250-1-5				-	543-1	543·1	5421/		 		54:55	48:40	44:45	, <u> </u>	50				
oyn)	1-11			K250-2-3	K 260-1 K	29a-1-3 29a-2-3	K30q-1 K30q-1		4557	1557	1544	-		├	34	20	20	43	24	24	29	<u>62</u> 58	60 56
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			KONOHHUI APO-					†	1155-1	1155.2	1154.2				100	-	7					1	7
12/2		1000	(basebup q			_ /	K300-2-1			0272	0012				13	3	3	/	g	9	17	58	56
2000			0.	K25015					6/12.4	5/07 6	-1/07												
SACO SACO					K260-1 K	290-2-3	K300-1		455-7	055-7	0544	4	<u> </u>		54,55 34	48;49 20	20	43	50 24	<u>50</u> 24	<u>53</u>	<u>82</u>	<u>60</u> 56
				n230-2-3					-													20	<i>56</i>
14	I-II	1500	α						155-1	<u>UB5-3</u>	<u>U543,</u> —	١,			19	3	3	1	g	9	17	58	
2 33		ń	CBA3EBBIE 5		- x	(290-3-1)	K300-2-1		1														57
19 19		<u></u>	Торцевые ј у т.ш.	K <u>25q-1-5</u> K25q-2-3	K260-1-5 K	290-1-5 290-3-3	K300-3-5 K300-2		6431 1155-7	543-1 1155-7	5421 U544				54;55 34	48,49	14,45	43	50	50	53	62	56
CITION	1. YKV3YH U	ואס חס מינו	TEHEHUHÎ MODKUDO.	boyybix	CXEM DE	10401 b	NOACHUMENSI	40Ú 30V	TUEKE						11 -17	100	110	-	<i>C4</i>	24	29	58	<u>60</u> 56
7 100 SH	2. Půzeny	продольн	אסריוטאטקח מוסק אוט	nneg n	O ONBOO	ony U	W 23-1/70.	2.37.	cmp.40.	V.	1 M	YPKUP.	08044	OA CX	PMM	חחי	7000	4/4/5/3					
1 Cut 2 Cut	יי רושת מארו	טפסססאע ע	וסויזטע, זי.								$\left \right _{\mathcal{M}}$	ממאנומ	วชิกนห	2-9-3	(50)		2		24	ימין		3610	VCK 0-2
177737		Company Control Cont		77 10																			

15749-01 6E

CCCP no	Hoomerubwan boemennan duurinbaan	Тип колоня	/ I	nonep	ible maj Peyhbix	OKU KU U NJ	ODDANA M	O EXEMPLA NOLX POLA.	Услои	RHBIR I NONEP	DODKU D EYHAÜ ,	UZENEÝ ODMOI	110 ex	eme	4caob.	HOIE !	nonepe	MOHI	אא אנטוו סמונט	1/8 de	толеи	no	'XEM
	НОГРЦЗКО НО ПЕРЕКРЫТИЕ	110 1101034EA	1410		1/2	13	K4		19	P2	P3	1			A	5	B	1	A	E	H	U	H
gangoy Sempo	KEC/M2	8 KGPKGCE		Postoy	IUE MO 420-12	JOKU A	TO JOHN SUITYCH	no cepuu 3	Paga. UU2.	14E MQ 3-2170,	1.420 1.420	72.00 NO 12 b	repui bin. 7	927	Paños	UR MOT TIM 2	OKU MO	0411100Y	CHBIX 2	deman Ssii	EÚ RO TYCK 10	CEDU.	917
	·	рядовые		K690-23	K700-2	K290-23	K300-1													·			5.
		XONOHHBI NDO- BONBHBIX PON	7		KT00-2-3	_	K30a-2-3		1155-1	1155-1	4541				19	3	3		7	~	17		
<i>1-1</i> Y	500	cbasebore	a		K700-2-1		1300-2-1			400)	1277		- 1		/3	3	3	/		′	//	58	5
			õ	1	K100-2-1	L	1		_														
		торцевые] у	mu.	K590-25 K590-2-3	<u> 1700-25</u> 1700-2	<u> 1290-13</u> 1290-23	K300-1-5 K300-1		1543-1	15431 115 5 7	1544]			<u>54,55</u> 34	48;49 20	44;45	43	<u>50</u>	<u>50</u> 24	53	<u>52</u>	50
		PADOBBIE		K694-2-3																			134
	40-0	ROMBHABI MOD BOMBHABIX PO	י- מי		K700+3-3	_	K30043		155-1	U55-2	U542	l	1		19	3	3	1	9	9	17	58	5
<i>I-I</i> [1000	CBA3EBb1E	a	_	K700-3-1	_	K30a41						- 1		1					_			3
		CUNSEDOIE	0	K690-3-1	K700-3-1	1290-41	K300-4-1					İ	1										
		торцевые)	1171.41.	K690-25 K690-2-3	1.700-2-5 1.700-2	K29a-1-5	130035 1300-2		5431/ 1155	1543-1	1544				<u>54;55</u> 34	48;49 20	44;45	43	50	50	33	58	-03
		PADOBSIE		K69a-3-3			13004			T												120	13
		KONOHHOI NO.	7-	_	K700143	_	K30043		1155-1	1155-3	4543				19	3	3	,	g	g	17		
<i>I-1</i>	1500	C 8938861E	a	_	1100-3-1	_	K300-5-1			-					/3	9]	′	9		''	58	5
			8		K100-3-1											`						1	
		торцевые	411.4	K690-25	X700-3-5	K290-1-4	K30035		543-1	1651	15421				57,55	48;49	44;45	45	30	50	<u>53</u>	62 58	5

1976

1. Украиния по притенению таржиравачных схет даны в пояснительной зописке стр. че-чч. Т

Маркировочная схета поперечных рам 2-9-4 (60). Маркировочная схета продольной раты.

1420-12 Boinyex 0-2 Suem 20

15749-01

Перечень листав альбота, C DOHNBIM SUEMOM

Совержание листа	Nº AUCAN
Маркиравочные схеты	
вертикальных связей: o. Варионт разреженнай nacmoнaвки:	76
. ठ. Вариант постановки в кижедам ряду	84
Τοδλυμα ποδδορα νυσλο προδολοκός ρατί το ερεδ-	1
משקט טרו יוטע, גופאטווטטטקוו אאסא משקאק מטא	74

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.100 K2 11.100 K2 5.100 K4 ±0.000 44	116281 35 TAM 22-1710 -11628+ 35 TAM 22-1710 11628+ 35 TAM 22-1710	11.100 11.100 5.100 ±2.000 Jayri
90 90×m 90 90 m=0÷4		50	

	Нормати вноя Временная			Yenob) nonep	HBIE MO DEYHBIX	OKU KO. U NPU	NOHH I	no exemi	יונים מי	40000	HBIE /	OPKY / PPEYHU	ouzene o por	14 10 C 161	xeme	SCAO	BHbIE	מות י	OKU ONE,	MOH O E YH	ITTO PH	CHBIX OG/PIB	den.	TONEL	i no	cxer
	длительной		110	KI	K2	K3	K4			PI	P2	P3	P4	P5	P6	A	5	B	1	\mathcal{L}	E	Ж	U	K	1	M
HOMY Ignopy Senipa	HOZPYJKO HO NEPĒKĪBINUE KZC 171 ²	B KOPKOLE		Poday	ye 110) 420-18	OKU KU	NOHH In.3	rio cept	W	Pagos UU 23	UE 110 -2/10	OKU PU 1.42	12 <i>eneú</i> 16 - 12	no çep	UAM UCK 7	Past	04UE	MOS	KU /	YOHITI TO,	00H H 1.42	16/X 20-12	demi	018U 8611	no e	repu)
		рядовые		K250-23	K250-1	K290-1-3	K300-1																			
		KONOHHUI NDO	7-	_	K260+3	_	K304+3			1155-1	UB6-1	11551	UB6-1	454-1	U55-4	19	3	z	1	7	7	2.77				
	500	связевые	a		_	_	K300+1			000)	U55-14	1227	456-14	2077	U55-27	19	١			1		17	30	56	18	8
	500		8			K290-1-1					E662 2	5000														
		торцевые ју	T.U.	1 <u>1250-1-5</u> 11250-2-3	<u> (260-1-5</u> K259-1	<u> </u>	<u>K300-1-5</u> K300-1			1857	45517	1657	5441 U5517	11544	5432 U5530	54,55 34	20	44.45 20	43	<u>50</u> 24	<u>50</u> 24	<u>53</u> 29	62 58	<u>60</u> 56	53 30	<u>50</u> 27
		рядовые		K250-2-3	K260-1	N290-2-3	K30a-1				\$5- 23															
		KONDHHU NOO- OONUHUUX POM			K260-1-3	_	K30o-2-3			U55-1	455-1	1155-2	1155.15	11542	U55-28	19	3	3	1	9	g	17	58	56		
<i>I-∐</i> ′	1000	ะชดเลยชาย	a				K30a-2-1			,	455-14			0072	000 20	/"				3	9	11	20	20	18	12
		CONSCUSIC	8	_		K29a-2-1					200.00	700					701-	1111 110								
		торцевые/у	M. 41.	K250-1-5 K250-2-3	K260-1-5	H29g-1-5 H29g-2-3	<u>K30q-15</u> K30q-1			643-1 _ <u>(155-7</u>	1156-1	11657	U56-17	054-4	543-2 105530	34,35	20	20	43	<u>50</u> 24	<u>50</u> 24	<u>53</u> 29	<u>62</u> 58	<u>60</u> 56	33 30	翌
		рядовые		K25a-2-3	K280-1	K29a-33	K304-2																	55		
		KONOHHUI MOU BONUHUIX PUM	·-		K26q-3-3		K30033			U55-1	455-1	455-3	U56-3	454-3	455-6	19	3	3	1	9	0	17	58	57	10	-
	1500	<i>เห็มระชิงเะ</i>	Ø		K260-3	_	K300-41				_	-	-	-		1			ĺ	_]	<u> </u> "	0		10.	12
		CUASE DOIE	8			K290-3-1				-7:27 -2	-	1 - 1/22	P		272.0	711.00	100.100	11/11/11				<u> </u>		56		
		торцевые/у	m.u.	K250-1-5 K250-2-3	X280-1-5 X260-1	<u> </u>	K300-3-5 K300-2		- 1	043-1 \055-1	1561	1557	156-17	15421	543-2 1155-30	34 34	20	20	43	24	<u>50</u> 24	<u>53</u> 29	58	<u>60</u> 56	33	50

1. Укозония по поитенению торкировочных схет доны в пояснительной зописке стр.40-44 (г. Ясгет предильных эст принитикатия по опьботи UU23-1/18. ж) Колонна рядовой раты.

Маркировочная схема поперечных рат 11-9-3 (60). Маркировочная схема продольной раты.

1.420-12 Bosnyer 0-2

Exema nonepeyhoù pambi

9,0

(U

99

(B)

03

20

90x111

K3

Exema продольной раты

23.100 TAM22-1170 U528-1 17.100 TAM 22-1/70 11528 71.100 Tam22-1/10 115281 5.100 K4 TAM 22-1170 ±0.000 \$0.4.17. 6,0

Перечень листов альботь, росстотривоетых совтестно C DONHOIM SUCMOM

Nº AUCTO Codepskyhye sucmo Маркировочные схеты бертикольных съязей; а Бариант разреженной постоновки. в. Вариант постоновки 75 8 KOMBOM DABY 84 Ταδημία ποδδορα γμένο npodonombix pom no cped-hum padom konomh 74

TUP no	Ноомитивная временная	TUD KRADH	y	Условн попер	IBIR MO PEYHBIX	ע אען אסן אינערערערערערערערערערערערערערערערערערערער	10HH TI BOSBHB	O CXEM	ממ	Genob)	HUIE M.	UPKU YHOU	puren pamb	eú no l I	<i>אויופ</i> ציי	¥0,	OBH CXE	bie i Me	יסנטיי מנו	KU 1 INEPL	TOHI PHHO	WHY. D	YOLX YOM	den v	חטופי	ú no
HOMY	वैग्रधामधारु भवात्र भवद्मवद्याराचा भवा	NO NONOMEH	110	KI	K2	H3	K4			PI	P2	P3	P4	P5	PB	A	5	B	<i>J</i> '	Д	E	ж	K	S	11	H
lanopy Sempo	nepekosimue Kecjai ²	B KOPKOCE		PDG041 1.42	12 MOJ 10-12	OKŲ KO, BUNYC	ODHH SI K3	o cepu	W _i	Pastoyi UU23	UE MOJ -2/10 L	OKU D. 1.420	U 2010U 1-12	no ce Bunyi	PDU IM PK T	Pou CE	१०५८)	e M MTAI	10KL 722-,	1 MO 1/70 C	HITTO 1 1.42	34.46. 20-12	2 80 2 80	lem sinye	rsio	10
-		Рядовые		K69a-2-3	K7Ca-2	K290-2-3	K300-1											1								55
		KONDHHUI NOU	7-		K700-2-3	_	K300-2-3			<i>455-1</i>	<u>U56-1</u>	U55-1	U55-1	U54-1	1155-4	19	3	.3	1	7	7	17	18	8	58	
	500	Planelin	Œ		K70a-2-1	_	K300-2-1				455-14	,	U56-14	, ,	1155-27										00	57
<i>I-I</i> V		[basebise	F	1		K29a-3-1						<u></u>														
		Topyebblely	MU.	K690-2-5 K690-2-3	K700-25 K700-2	X290-1-5 X290-2-3	K300-1-5 K300-1			543-1 1055-7	544.1 U56.17	5434 10557	544-1/ 1558-17	642.1 / 11544	5432/ (15530	54;55 34	48;49 20	20	43	50 24	<u>50</u> 24	53 29	<u>53</u> 30	50 27	62 58	60 56
4		Рядавые				K290-3-3																				30
		KONOHHOI NO	7- 7		K700-3-3		K30a-43			U55-1	<u>U56-1</u>	1155-2	1156.16	1154.2	<i>1155-28</i>	10	7	3	1	9	g	17	18	12		
<i>I-I</i> I	1000	[b932bbje	Ø	_	K704-3-1	_	K300-4-1			000	U56-14	220 2	0000	0272	00920	2						<i>"</i>	10	12	58	57
			8			K29a-4-1						700		-												
		Topyebble/s	IM.W.	K69a-2-5 K69a-2-3	K700-2-5 K700-2	K29a-1-5 K29a-3-3	<u>K300-3-5</u> K300-2			543-1/ 1055-7	1581	10557	156-17	11544	5432/ \U5530	54;55 34	48;49 20	20	43	<u>50</u> 24	<u>50</u> 24	<u>53</u> 29	$\frac{53}{30}$	<u>50</u> 21	62 58	61 57
		Рядовые		K59a-3-3	K700-3	K290-4-3	K300-4											ł								3/
		KONDHHDI NO.	7-		K70033		K30q-43			11551	456-14	U55-3	U56-16	U54-3	<i>U55-29</i>	19	3	7	1	g	9	17	10			
I-II	1500	Marakus	a	_	K700-3-1		K30a-5-1			U55-1	_	_	=		=	/9	ا	3	/	9	9	"	18	12	58	57
cm.npum.		[8,93885]8	, -	,	1	K29a5-1					200	F071		200		7/100	16.40	6/11/4		(1)	(0		-			
		Topyebble/y	111.111.	X690-2-5 X690-3-3	K100-3-5	K290-1-5 K290-4-3	K300-3-5 K300-4			543-1 055-7	15617	155-7	115517	1054-4	115510	34 34	20,44	20	43	50	<u>50</u> 24	<u>53</u> 29	53 30	30	62	51

23.100

17.100

11.100

5,100

+0.000

30.4.11.

1. Указония по применению торкировочных схем даны в пояснительной записке стр40-44. 2. Ригели прадольных рим приниманьтея по охобому 4023-1/10. 3. Робоны принимоньтея при "т"=24-1 робон; при т"=0,1,3-1-11 робоны.

Маркировочная схета поперечных рат 17-9-4 (60)

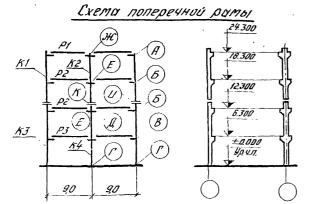
Маркировочная схета прадольной раты.

1.420-12 BUINYCK 0-2

Suem 15749-01

Содержание листа	Nenucra
Маркировочные схеты вертикальных связей:	
а Варцант разреженной пастанавки	75
б. Вариант постановки в каждом ряду.	84
Таблица подбора числа продольных рам по среднету ряду колонн.	74

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$


Paúon CCCP no	Нормативная временная апительная	Тил колонн	,	YCAOBHU NOODO	DIE MOP NOHOLX	U NON	TOHH TI	o exem	מוש ק	Yenobi	HBIE M ONEPE	OPKU P VHOÙ	POMBA	Ú NO L	xeme	9cn0	BHDIE 1 CX E	Mapk. PMP	U MO	HMQ.	KIDH XI QÜÜ	ombi	70/180
KOPOEM-	апительная нагрузка на	ПО ПОЛОЖЕНИ	100	KI	K2	K3	K4			PI	PZ	P3		l		A	5	B	"	A	E	ж	4
Hanopy Bemba	repekpartue k 20/m²	в наркасе		Pato44 1.42	e Mapk 20-12	KU KOM Bunyu	0HH 110 CK 3	серц	/	Pata4 UU	UP MOY 23-2/10	OKU PU	12012Ú 20-12	no cer	מ <i>ונע</i> ס די	Pool cep	משער ! מאש	MOPKE TUM 2.	U MO 2-1/70	H577074	CHDIX 20-12	dem Boin	yneú n yck 10
		рядовые		K250-2-3	K260-1	K33a-1-3	K340-1																
		KONOHHOI APOO HOIX POM	010-	_	K26a-1-3		K340-1-3			U55-1	U55-1	1154-1				19	3	3	,	7	17	58	56
	500	связевые	a	_	_	_	K34a-1-1	'						l					ĺ	ĺ	<i>''</i>	20	
	'	LUXSEUUIE	0			K33a-1-1	K340-1-1					1	١.	1.									
I- <u>I</u> V		торцевые/у	m.u.	K250-1-5 K250-2-3	K260-1-5 K260-1	K33a-l-5 K33a-l-3	K34g-1-5 K340-1			543-1 - U55-7	5431 - U557	5421				54;55 34	48:49	44.45	43	<u>50</u> 24	<u>53</u> 29	<u> 52</u> 58	<u>60</u> 56
		рядовые		K250-2-3		K330-2-3																-	56
		KONDHHU TOOL	016-	_	K26a-3-3	_	K340-3-3			455-1	1155-2	U54-2				19	3	3	,	9	17	58	57
	1000		a		_		K34a-3-1							ļ]	ľ		`		56
3.1		связевые	0	_		K33a-2-1	K34a-3-1	1									1	1					20
		торцевые ју	M,U.	K250-1-5 K250-2-3	K260-1-5 K260-1	K33a-1-5 K33a-2-3	K34g-1-5 K34g-2			543-1 1055-7	543-1 10557	642-1 -054-4				54;55 34	48.49	44:45	43	<u>50</u> 24	<u>53</u>	<u>62</u> 58	<u>60</u> 56
		рядовые		11250-2-3						, i.													56
	,	KOMUHHUI MPO HUIX POM	0016-	_	K260·3-3	_	K34a-4-3			U55-1	U55-3	U54·3				19	3	3	1	9	17	58	57
	1500	связевые	Ø	_	K260-3*	_	K34041	1		1	=							1		_			56
		שטשטאנעט	0	_	_	K33a-3-1	K340-3-1																50
		торцевые/у	m.w.	11250-1-5 11250-2-3	K260-1-5	K33q-1-5	K34q-3-5			543-1		0644				54:53	48:49	44,45	43	50	<u>53</u> 29	<u>62</u>	<u>60</u> 56

1. Указания па притенению тархиравачных схет даны в пояснительнай записке стр. 40-44. 2. Ригелу прадальных рат принитаются па альдату ИИ23-1170.

* Колонна рядовай раты.

Маркиравачная схета поперечных рат 2-9-3 (72,60). 1976 Маркиравачная схета продольной раты. 1.420-12 Bunyek 0-2 Ayem

15749-01

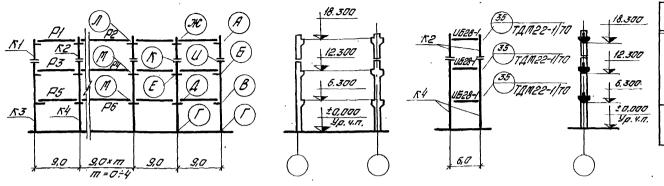
Схемо продольно	ni pambi
U5281 (35) Tan 221/10	24.300 pt
W2 U5281 35 TUM22-1/10	18.300
115281 (35) TAMES-1710	12.300
<u>K4</u> <u>U5281</u> (35) TUN 22-1710	6.300 ± 0.000
++	904.17
50	\bigcirc

Перечень листов ольбота расспатриваетых совтестно C DONHOIM SUCMOM Nº AUEMO Содержание листа Маркировочные схеты верпикальных связей: а Вариант разреженнаў постыновку б кождат ряду 76 84 Таблица падбора числа продольных рат по среднету ряду колонн 74

CCCD	Нортотибная Вретенная	Тип колані	4	Yenobi npoda	HBIE MO MBHBIX	U NOM	ONOHH EDEYHB	no exe	Man	Genob	HOIE M NONEPE	OPKU P	DURENEU	i 110 ex	eme	Условные парки тонтожных деталей по схете поперечной роты											
CKOONNO-	ANUMENBHOR HOZDYSKO HO	NO NONOXHEH	UKO	KI	K2	K3	K4			PI	PP	P3				А	5	B	~	1	E	Ж	11	1			
HONDPY BEMPU	nepekphinue K201m²	b raprave		Pagau	1.420-1	0KU KU 12 86	NOHH INYCK 3	no cep	UU ,	Popos	1UE MOJ 23-2/70	DKU DU U 1.420	eneu b	no cep	<i>USIT</i>	Poot cept	YUE I	TOPKI AM 2	2-1/70	אנטחוץ ע ע	CHOIX		UNEU	18			
500 I-IY		padobose		K690-23	K700-2	K330-2-3	K340-2							Ī			r = -			<u> </u>				ī			
		KONOHHBI NDO- DONBHBIX DOM			K700-2-3	_	K340-23			455-1	1551	U54-1				19	3	3	1	7	7	17					
	500	cbasebble	a		KTOQ-2-1	_	K340-21									/			l ´	ĺ		//	58	57			
		20,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5	K69021	K700-21	K33a-2-1	X340-2-1				1			1	1												
		торцевые	y m.w.	K <u>69a-2-5</u> K69a-2-3	K700-25	<u> </u>	K340-1-5 K340-2			543-1 1055-7	543.1 U55-7	0544			 	54:55 34	48;49	44;45	43	50	<u>50</u> 24	23	50	60			
	рядовые		1690-23	K700-2	K330-3-3	K340-3					7	1			1	1				27	29	58	137				
		RODONHOI DOO-			K700:33	<u></u>	K340-43			455-1	1155-2	U54-2	2			19	3	3	1	g	g	17					
	1000	c593880/8	a	-	K700-3-1		K340-41							1 1								"	58	5			
			0	K690-3-1						1	1			l													
		mopue8vie/y	m.w.	K69q-2-5 K59q-2-3	K700-2-5 K700-2	K <u>33a-1-5</u> K33a-3-3	K340-35 K340-3			543-1 U55-1	543-1	11544		l		54;55 34	<u>48;49</u> 20	44,45	43	<u>50</u> 24	<u>50</u> 24	53	62 58	6			
		PAROBBIE		K590-3-3	1							40/7		\vdash	 	27	20			27	17	20	58	5			
		KONOHHDI NOO DONOHDIX PON	1	_	_		_			11000	1155-3	454-3					_	_		_							
<i>I-I</i> /	1500	lane.	a	_	15700-3-1	_	1340-5-1			455-1		-			1	19	3	3	1	9	9	17	5∂	5			
		cb93ebbie	1 -	1690-3-1		1	L					1															
	1	торцевые/у	m.w.	K690-2-5 K690-3-3	K700-3-5 K700-3	K330-4-3	N34035 N340-4			543-1 155-1	543-1 U55-7	5424				54:55	48:49	44;45	43	<u>50</u> 24	<u>50</u> 24	53	62	6			

^{1.} Указония по применению мархировочных схем доны в пояснительной зописке стр. 40-44. 2. Ригели продольных рам принимонатся по опьбату UU23-1/70.

Маркиравачная схета поперечных рот 2-9-4 (12,60) Маркировочная схета продольной раты.


1.420-12 Boinyer 0-2 Sucm

15749-01

Cxema nonepeynoù panoi

Схема продольной рамы

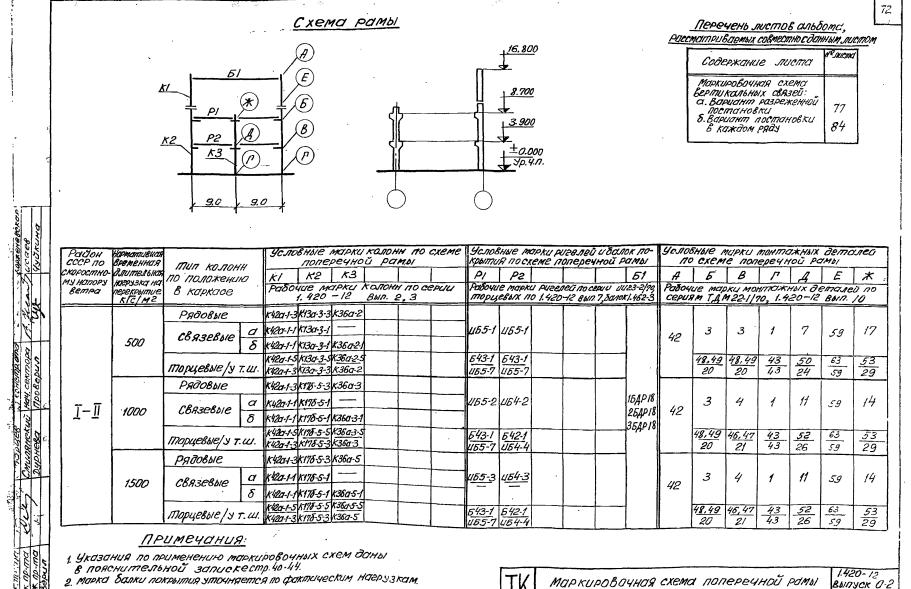
Перечень листов альбата,

Содержание листа	Nº AUCTO
Маркировочные сжемы вермикальных связей:	
а. Вариант разреженной постановки,	76
ह. Варичнт пастинавки ह кажедат ряду	84
Tabnuya nadbapa yucna npadanshux pam na cped- uum padam konann	74

Pavax CCCP na	Hapmamilias Baenennas			Условные тарки колонн по схемот поперечных и провольных рам							Условные тарки ригелей по схеть Условные тарки токтрэжных детапей по схете поперечной раты												70				
	Anumenskas naspyska			<i>K1</i>	12	K3	14	,		PI	P2	P3	P4	P5	<i>P5</i>	A	5	8	/	4	E	H.	4	1	1	M	
CKODOCHI - HOMY HIJODY Bernoa	MO MEDEROLINUE	в каркасе		Paso	420 -	12 8	KONON WITYCK	H 110 C	epuu	Paga 1112.	yue M 3-2/10	4 1.40	puze. 0-12	neý na Buny	ceguan VCR7	Pab Ta	044e 4172	Mag 2-1/7	00	MOH! 1.420	7-12 1-12	CH812 80	Jen	TOTEL	ý na	cepu	919
		Радавые		125623	1260-1	/\35ar+3	N340-1											·					. }				
		ROMONHOI MOO-		_	N260+3	<u></u>	N.340+3			1195-1	1166-1	1155-1	USG-1	1154-1	1155-4	19	3	3	/	7	7	17	58	56	18		
	500	C ชีครอชชงา <i>อ</i>	a		_	1	13km/-1			0007	00074		ULJO 74	1	45527						 	"		00	10		ı İ
			8	-			1340H																				
		Торцевые /у т.ш.		K250-15 K250-23	1280 15 1280 7	1330-75 1330-73	1340-15 1340-1			545-1 455-7	<u>544-1</u>	<u>5434</u> U55-7	544-1 U56-17	642-1 U54-4	545-2 U55-30	54,55 34	20	20	45	<u>50</u> 24	50 24	<u>53</u> 29	<u>82</u> 58	50 56	53 30	50	
	1000			N25023	1250-1	N33a23	K340-2		,	V65-1														58			
}		KONOMHU NDO- BONUHUX POM			N26633	_	K34033				U55-1	455-2	2 056-13	454-2	455-28	19	3	3	1	9	و	17	58	57	18	12	i
I-IV		Связевые	α	_		_	K34031				00074														"	12	
			8				K34634							<u> </u>										55			
ļ		Tapyebue / y :	·w.	N250+5 N250-2-3	N260-1-5 N260-1	K330+5 K33023	1340-1-5 15340-2				544-1 U56-11		1544-1 156-17	642-1 U54-4	E43-2 UE5-30	34	20	44; 45 20	43	50 24	50 24	<u>53</u> 29	58	50 56	<u>53</u>	50 27	l
		Padobsie		125023			1					İ												56			
		ROJOHNO MOO-		_	X26a-5:3	_	K340-43			U55-1	UB6-1	465-3	U56-3	U54-3	455-6	19	3	3	1	9	و	17	58	57	18	اور	
	1500	Связевые	9.		x250-3*		K340-47						_	_											"	10	
		UUNSEUNE	5				1.340-31									- FC - F	70.4	leter to						56		1	ĺ
1		Tapuessie / y ;	T.W.	N259-1-3	R260-7	153013 153053	1540-55			<u> 543-1</u> U55-7	<u>158-17</u>	<u>5434</u> 0557	<u>156-17</u>	154-4	543-2 UB\$-30	34	20	20	43	<u>50</u>	50 24	5 <u>3</u>	<u>58</u>	<u>56</u>	53 30	50 27	ĺ

^{1.} Указания т применению маркировачных схем даны в пояснительной записке стр. 40-44.

ТК Маркировочная схема поперечных рам п-9-3 (12,60). Маркировачная схема продольной рамы


1.420-12 8 sinyex 0-2 Nuem 25

15749-01 7

^{2.} Ригели прадольных рам принимаються по альбому ЦЦ23-1/70. ЯКолонна рядовой рамы

	7-	7^{*}_{I}
Ехема паперечной рамы Схема п	<u>прадальной рамы.</u> Перечень листов альбота,	
\mathcal{J} \mathcal{J}	этеречена заветов изового по данным лиц 35) — 24.300	anor:
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TAM 22-1/10 Codep-2004UE SUCMA Nº NUCTO	
P3 1000 1000 1000 1000 1000 1000 1000 10	Тамге-1/10 Моркировочные схемы	
P3 T1 704 T F T T T T T T T T T T T T T T T T T	35) 12.300 вертикальных связей: 0. вориант розреженной 16	
K3 K4 () + () + () 6300 \$\)	35\ 6300 0. 80000mm noomohobku 01	
P5 P6 4 15281 X	33) Tarr22-1/70 3.500 0. Syptomin HoemoHobba 84	
+ 0000 Varia	## 1900 Tabnuya noddopar 400na ## 1904.0	
90 90×111 90 90		,
$m=0$ $\neq 4$		
Ройон Идополивной Тип колонн Заловные тарки колонн ПО Схетот Воловные торки од СССР по временной Тип колонн поперечных и продольных рат поперечной р	veneri na czeme Yanabhare majozu marmarzenow demaneri pamar	1
VKDDDDD- I dayagas Unio	P4 P5 P6 B 5 B T A E H K Q M	1
τιστορή περεκρώπου ε κοιρκόνε Εκοιρκόνε Εκοιρκόν Ευρονία Ευρονία Ευρονία Εκοιρκόν Ευρονία Ευρ		
Padobose \\ \(\text{K690-23 \cdot \text{710-2} \) \(\text{V330-23 \cdot \text{V340-2} \)	S denigen 10	-
KONDHIEL NOO-	U56-1 U55-4 ·	
500 0 0 - K700-23 - K340-2-3 U55-1 U55-1 U55-1 U55-1	1050-14 1054-1 105-27 19 3 3 1 7 57 17 58 78 8	
I-IV [289.368016] D KO90-21 K7300-21 K330-21 K340-21		
Township in m. 1690-25 1700-25 1330-15 1340-15	5441 5421 5432 54.55 48.44 44.45 50 600 55 62 55 50 50 50 50 50 50 50 50 50 50 50 50	
10,003,0011	10617 1644 1650 74 20 20 43 24 57 29 50 50 27	
KONDHIOI NDO- LONG TO LOS LOS LOS USES	1156-15 1154-2 1165-28 19 3 3 1 9 57 17 50	
7-17 1000	1156-15 1154-2 1165-28 19 3 3 1 9 57 17 58 18 12	
(0,8380618 0 48902) (700.2) (7304) (140.4)		
TOPUEBOIE/YM.U. 1690-25 1700-25 1730-15 17340-3-5 17540-3-5 17557	8441 6421 6432	İ
PADOBOLE K8903314700-3 K33043 K340-4	25 30 30 27	
1-11 RONOHHOI NOO: - 170033 - 134043 11551 115514 11553	456-16 4543 455-29 19 3 3 1 9 57 17	
1500 G - 170n31 Silvetil	<u> </u>	
6 163031 170031 133041 134051	5111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
TOPUEBbie/ym.w. 1030-25 1700-35 1330-15 1340-35 1543 1 1687 1687 1687 1687 1687 1687 1687 16	1564 1 562 1 542 1 545 1 54 57 1 57 57 57 57 57 57 57 57 57 57 57 57 57	
1. YKOJOHUO DA DOUMPHPHUH MODKUDOBOUHHU DYOM ZOVIA R	130 27	j
ROSCHUMENOHOU SONUCKE CMD. 40-44. 2. Pizenu npodonohoux pom npouhumanomen no anodomy UU23-1/70.	Морхировочная схема поперечных рат 1420-г п-9-4 (1280). Выпуст (
3. Pasanta in partial mental m	П-9-4 (72.60). 1420-г Мархировочная схета продольной рамы	7.2
"M"=0,1,3 - I-II p-1461.	HAPROPOUGHT THE THE THE THE THE TOTAL OUT THE	~-

15749-DA

1976

Пист

15749-01

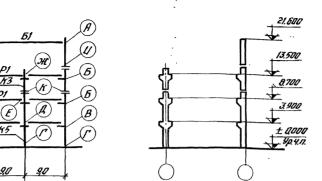
2-9-3 (48,48,72)

Перечень листов сыьбома, расстатриваетых совтестно с данным листом.

Содержание листа Мънста

Маркировочные схемы вертикальных связей: а. Вариант разреженной постановки. Б. Вариант постановки в каждом ряду. 84

Район СССР ПО	Нармативная ВРЕменная	Пип колонн		90.108	HWE MG	PKU KOJIO EYHOĞ I	HH 110 C	схеме	УСЛОВ Крыти	HOIE ME	TPKU PL CXEMI	IEENEÜ	U δα.) 2084H	10 K 110- 10 D POMBI	YCSIC II	BHBIE .	MOPKU Me 110	монп. переч	OCKHNO HOO H	x den Pambi	anea
CKOPO CMHO	- длительная	по положен		KI	K2	K3			PI	P2				51	A	5	B	17	B	Ε	*
Bempa	HARPYSKA HA REPEKPWRWE KTC/M2	в каркасе		Pooo	440 MC	PKU KONON	1H 10 CE	epuu	Рабочи 1710 рце	ie Mapku EBNX 110 l	ригелец 420-12	и по сер Вып.7	Sasok	123-2/10 1,462-3	Pαδο 110 ce	4UE MG 0UAM T	рки мо Дм-22	HMAX 1/70, 1,	HOIX C	gemas 2 Bb	neij IN.10
		Рядовые		K420-1-3	K13a-3-3	K360-4															
	'	Связевые	a	K420-1-1	K130-3-1				455-1	456-1					42	3	3	1	7	59	17
	500	CONSCONE	8	K4201-1	K13a-3-1	36a-4-1									1/2						
		Порцевые / у		VIONIC	M2~20	Y367/15			643-1 U65-7	<u>543-1</u> 455-7						48,49 20	<u>48.49</u> 20	43 43	<u>50</u> 24	63 59	53 2 9
		PAROBBIE		11	K178-5-3										·						
W 150		00000000	a	K420-1-1	K178-5-1				455-2	454-2	1			1БДР18 2БДР18 3БДР18	42	3.	4	1	11	59	14
<u>II-IV</u>	1000	CB A3CBWC	δ	K420-1-1	K178-5-1	360-4-1		<u> </u>						35AP-18	42	-					
		Mopueswe/S	Y T.LLI.	K42a-1-5 K42a+3	K <u>178-5-5</u> K178 5- 3	(36a-4-5 (36a-4			<u>543-1</u> 455-7	542.1 U54.4				30,71		48,49 20	46,47 21	<u>43</u> 43	<u>52</u> 26	· 63 59	<u>53</u> 29
		PAROBBIE		4	K175-5-3	- 1															-5
		08000000	d		K178-5-1	-			И <u>Б5</u> -3	454-3					42	3	4	1	11.	59	14
	1500	Связевые	δ	K42a-2-1	K178-5-1	k36a-5-1									-				:		
		Порцевые/	Y T.C.L.	K420-2-5 K420-2-3	K178-5-5 K178-5-3	(<u>36a-5-5</u> k <u>36a-5</u>			543-1 U55-7	<u>542-1</u> U54-4						48,49	46,47	43	<u>52'</u> 26	63 59	53 29
	7	DUMPUCHI																		·	


TIPUMEYQHUA:

- 1. Указания по применению маркировочных схем даны в пояснительной записке стр.40-44.
- 2. Марка балки покрытия уточняется по фактическим нагрузкам.

TK 1976

Маркировочная схема поперечной рамы 2-9-3 (48,48,72) 1.420-12 BUNYCK 0-2 JUCM 28

15749-01

Перечень листов альбото,

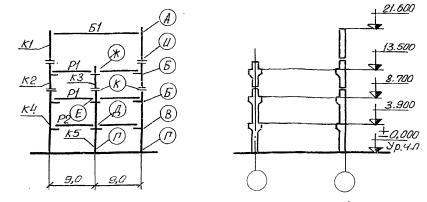
расстатрибаетых совтестно с данным листог

Содержание листа	Nº AUCTIO
Маркировочная схема вертикальных связей: а вариант разреженной пасточнавки в вериант пастонновки в кождот ряду.	77 84

POWOH CCCP NO CKOPOCNIHÓ	Hapmoru BHOR Boerren HOR Bourney Hord	Тип колонн	,	901081	HBIE P.	IODKU YHOÙ	KONOR	HH NO I	cxeme	90106 10Kpb	HOIE M VTUR N	apku _j Ozxeme	DYZENE ? NONED	U 4 AL PEYHOÙ	DOING DOING	9010 110		mapi						1eti
MU HNITODU	HORPYSKA NO	NO NONOXEEHO	110	M	K2	13	K4	15	<u> </u>	PI	P2	/			51	A	5	B	7	Д	E	ж	4	K
Ветро	TEÓÉKPATUE KZOJM ²	в каркасе		Poor	148 MO 420-12	pku i	KONDHH BUN	1 110 C	ерии	Partoy. mopul	YE MOD BOX 70	KŲ DURE 1. 420-12	eney no 8611.7,	CEDUUU DDNOK I	123:2170, 462:3	POTO 10	YUE I	TOPKY	10/22	17100	EHBIX 1.420	0e1	TONE	ry O
		Рядовые		14201-3	K350-1-3	K120-4	K170-4-3	M80-2		1														
	اسما	Связевые	o	K4201-1	K350+1	_	K170-4-1			455-1	4541		ĺ	ĺ			3	3	1	7	7	17	59	58,56
	500	CUNSCUULE	8	14201-1	K3501-1	KR041	1170-4-1	K180-2-	1							42								
		Торцевыеју	M.W.	X420-1-3						543-1 U55-7	1542.1 11544				15AP18		48,49 20	44.45 20	43 43	<u>50</u> 24	<u>50</u> 24	<u>53</u> 29	<u>63</u>	62;60 58;58
<i>I-II</i>		Рядовые					K170-5-3								26AP18 36AP18		20	20	72	24	27	29	29	20,20
	1000	Связевые	Ø	K4201-1	K350-1-1		K170-5-1			U55-2	454-2					42	3	3	1	9	9	14	59	58;56
	1000		8	K420+1	K35U4-1	K12a-41	K170-5-1	K180-2-1	1							72								
1.		Торцевые / у	mu	<u> </u>	K350-1-5	K120-45	K170-5-5	K180-2-5			642-1						48,49	4445	43	50	<u>50</u> 24	<u>53</u>	63	62;60
		ropacout /g.	w.w.	X42013	KJ501-3	K120-4	K170-5-3	K100-2	L	10557	454-4		L	L		1 1	20	20	43	24	24	29	59	58,56

Примечания.

I. Уколония по приченению маркировочных схет доны в пояснительной зописке стр. 40-44. 2. Марки балку покрытия уточняются по фоктическим нагрузкам.


KI

K4

Маркировочная схета поперечной POMBI 2-9-4 (48,48,72).

Содержание листа
Маркировочная схема
вертикальных связей:
а. Вариант разреженной постановки
б. Вариант постановки в каждом ряду

75

CCCP110	Нар ма тивная Временная Злительная	ПИП КОЛОНН	4	90,00	BHBIE MO 110 NEPE	APKU I YHOĞ	POM	1 170 CX	еме			KAPKU I CXEME				Yest	OBHWA NO C	YEME	PKU M	10HM	dx Hb	IX de	MOI	neű
MY HOROPY	HARPY3KdHA	по положени		KI	K2	K3	K4	K5		PI	PZ				51	A	6	B	Π	4	E	*	U	K
68 MPA	<i>пере</i> крытие КГС/м2	в каркасе		Pato	4UE MAP 1.420	-12	DAOHH BbIN	no cer . 2,3	PUU	Рабочи 1710рце	IE MAPK PBNX 170	1.420-	PEŬ NO C 12 BBIN.	PUUUU 7, Sanok	<i>1123-2 70</i> 1.462-3	Palor ce,	DUAM	TAM.	40HM 22-1/	70, 1	61X 6	1em -12	1.00 1.00 10 10 10 10 10 10 10 10 10 10 10 10 1	10
		Рядовые		K420-1-3	K35a-1-3 K	120-4	K170.4.3	K180-2								,								
	_	CB93eBble	a	K42a-1-1	K35a1-1		K17a-4-1			<i>1155-1</i>	464-1					١	3	3	1	2	7	12	5 <i>9</i>	58:56
	500			F	K35a-1-1 K											42								, ,,,,,
<u> </u>		<i>Порцевые</i> /у	T. U.I.	K420-1-5 K4201-3	K35a1-5K K35a1-3K	<u>12a 4-5</u> 12a-4	K <u>17a-4-5</u> K17a-4-3	K180-2-5 K180-2		543-1 U55-7	<u>542-1</u> U54-4				16ДР18		48,49 20	4 <u>4,45</u> 20	43	<u>50</u> 24	<u>50</u> 24	<u>53</u> 29	<u>63</u> 59	62,60 58:56
<u> </u>		PAROBNE			K35a2-3 K										2БДР18 ЗБДР18									10,00
	1000	Связевые	Ø	K42021	K35a-2-1		K170-5-1			<i>U65-</i> 2	U54-2				, , , , _,		3	3	1	9	9	14	59	58;56
					K35a-21 K											42								'
1		торцевые/У	TIII	K42025	K35a-2-5 K	120-4-5	K170-5-5	K1803-5		543-1	542-1						4 <u>8,49</u> 20	44,45	43	50	50 24	53 29	63 59	62;60 58;56
	<u> </u>	/0	7,000	K420-2-3	M330-23M	120-4	11/0000	11121-3		U55-7	1054-4	1				L	20	20	43	24	24	29	59	58,56

NPUMEYOHUA:

- 1. Указания по применению маркировочных схем даны В пояснительной записке стр. 40-44.
- 2 Марка балки покрытия уточняется по срактическим нагрузкам.

TK 1976

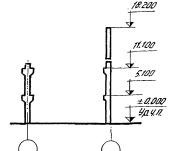
Маркировочная схема паперечной рамы 2-9-4 (48,48,72) 1.420-12

Sucm

BNITHEKO-2

POÚOH CCCP NO	Нормативная Зременная	Тип колон		40,1281		YDKU K EYHOU			EME	SCAUBA KD61ML1	1018 MOJ 9 170 CX	ENU DU	IERNEÚ L TONEPEY	1	5 110- 1019101	Yeno. NEU	BHOIE. 10 C.	199,0X 78198	אטויו עו מחסרו	INIGH DEYHL	HOLK .	dem error
CKOPOCM- HOMY	no (зделенная) 10m - фительная 10m - фительная 10m - фительтив 10m - кгс/тг	по положена	110	KI	K2	K3				PI	22				51	A	5	B	1	1	E	H
напору Ветра	TEDERPOINTUE	в кархасе		POTOY	UP MOL 1.420-	OKU KU 12 BU	MOHH HN3	110 CE	PUU	P005040 UU23-2/1	18 MOS 10, 1.420-	KU DU 28MT T	geneu i Tanos i	no cepu	DUAIN U 1.452-3	Pago	1448 1	YUYOKU EDUNN	7004	77.013H 2-1/70,	H61X 1420-	de- Lebon
		Padobbie		X420-1-3	1274-3-3	1380-1																
	500	[893eBb1e	a	X420-1-1	K270-3-1					455-1	U65-1		1			42	3	3	1	7	17	5
Şī	,	-		X420-1-1									1							İ		
	1000m - (TopyeBbie/y	M.UI	1420-13	X210-3-5 X210-3-3	K <u>380-1-5</u> K380-1				<u>543-1</u> 1155-7	543-1 U55-7				1 1		48,49	48:49	43	50	53	5
T 17		Рядовые		1424-13											15API8					-7	23	زدر
I-II	1000	00 0	a	X420-1-1	K270-3-1					455-2	455-2				2511918	42	3	3	1	9	14	5
	1000	ใช้คระชิชเย	5	X420-1-1	K270-3-1	1380-2-1				<u> </u>	<u></u>				35DP18							
		TopyeBbie/y	M.UI.	N409-15 N400-1-3	K210-3-5 K210-3-3	K 380-2				543-1 U55-7	543-1 U55-7				1 i		48:49 20	48;49 20	43	50 24	53	53
		PADOBOIE		1424-1-3	1290-5-3	15400-1				1/56.3	4543				1						25	22
*	1500	<i>C89328612</i>	o	K420-1-1	1290-5-1] = -	-			Ì		42	3	3	1	9	14	5
	7000	CUASEUDIE		1420-1-1			1															
		TopueBoie /41	n.u.,	X420-1-5 X420-1-3	K290-5-5 K290-5-3	X400-1-5 X400-7				543-1 455-7	1542-J 11544				1		48:49	44.45	43	50	<u>53</u> 29	8

1. YKOJUHUR 170 NDUMEHEHUKO MODKUDOBOHHBIX CXEM DOHBI B


90

пояснительной записке стр 40-44. 2 Марка балки попрытия уточняется по фактическим нагоцзком.

TK

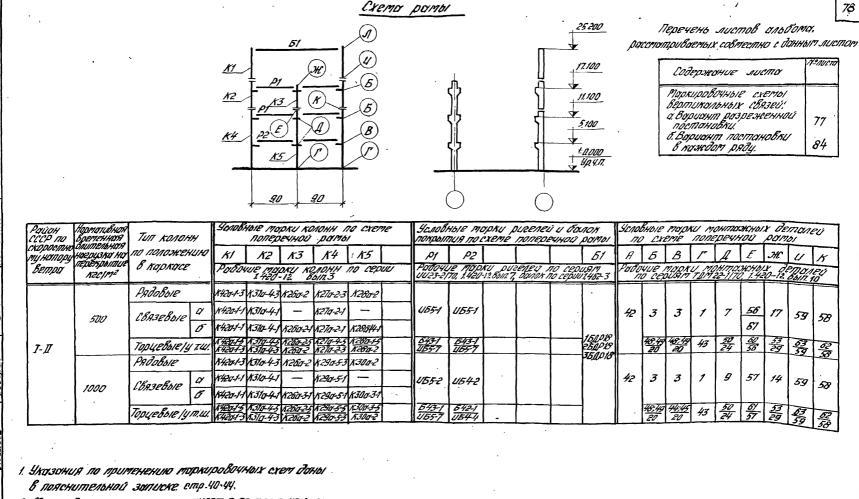
Маркировачная схема пиперечнай раты 2-9-3 (60,60,72).

1.420-12 Boinyero-2

Перечень листов ольбото, paceriampubaemoix cobrecinho e danhoiri sucmori

Содержание лигта	Nº NUCMA
Маркиравачные схеты Вертикальных связей:	
а. Вариант разреженной постанивки	77
в, Вариант паетановки в кождот ряду,	84

POUDH CCCP NO	Нортативная вретенная	Тип колоня	·	Услов	HUIE M	מאקט. פאאטט	KOJOH POPI	1H 170 E	cxeme	Условн крыти	DIE MOJ 9 NO CX	OKU DU EME TU	reneú L nepeyi	1 5010. 400 D	K 110- OMBI	Geno. Nevi .	BHbIE NO CX	Map) EME	KU MU NONE,	DHMD. DEYH	HCHBIX GÚ PL	r dema orasi
HOMY	CCP no beereking Repoor - Authenting Harry - Repopulation Harry - Repopulation Benjoy - Recing	חם חסמסאנפאי	410	K1	K2	K3				PI	P2		-		51	A	5	B	"	Д	E	ж
bempa	TEPEKPAIMUE	b raprace		P0004 1,420	ue maj 1-12	oky ko Boiny	ONOHH CK3	no ce,	0011	Parto4UR UU23-27	? MAIDK 10, 1.42	u pyre Urbbin	eney na 7 danon	o cepe s not.	11.914 462-3	P00504 110 CE,	UE MOJ OURM T	OKU MO DM 22-	המחומה 1/10 ט	CHDIX 1.420	дета; -12 ві	920 717.10
		PAROBOIE		1420-2-3	1270-43	N380-1																
	500	<i>โซกรยชชเย</i>	Ø	1420-2-1	127041					U55-1	455-1		·			42	3	3	1	7	17	59
	1 000		- 1	x420-21]												
	180000m - Тиштельная Кату Напору Напору 18000 - Тиштельная Насут2 1500	Topuessie /4/	7.44.	X420-2-5	1270-4-5 1270-4-3	1.30-1-5 1.300-1	<u>. </u>			-11557	1557						20	40,40 20	43	10 24	<u>53</u> 29	<u>53</u> 59
		PROUBBIE		x420-23	K210.43	K380-2				11					15AP18						_	
M-18	.00	a	K420-21	K270-41	-				455-2	U55-2				26IP18 35IP18	42	3	3	1	9	14	59	
	7000	<i>[89328618</i>	0		K270-41				- '						7							
		TopyeBbie jy	17.14.	X420-25 X420-23	N210-45 N210-4-3	K380-1-5 K380-2				543-1 1155-7	543-1 1657				1 1		48;49 20	4 <u>9;49</u> 20	43	<u>50</u> 24	<u> </u>	59
		PADOBBIE		31	N290-5-3]							
	[BA3EBbje	0	X420-21	1290-5-1	_				1155-3	<i>U54-3</i>					42	3	3	1	9	14	59	
	II - IV 1000		5		1290-51														1			
		TopyeBbie/ y 1	7.44.	K420-2-3 K424-2-3	N290-5-3 N290-5-3	K400-1-5 K400-1				543-1 1055-7	5421 11544				1		48;49 20	44;45 20	43	<u>50</u> 24	<u>53</u> 29	53

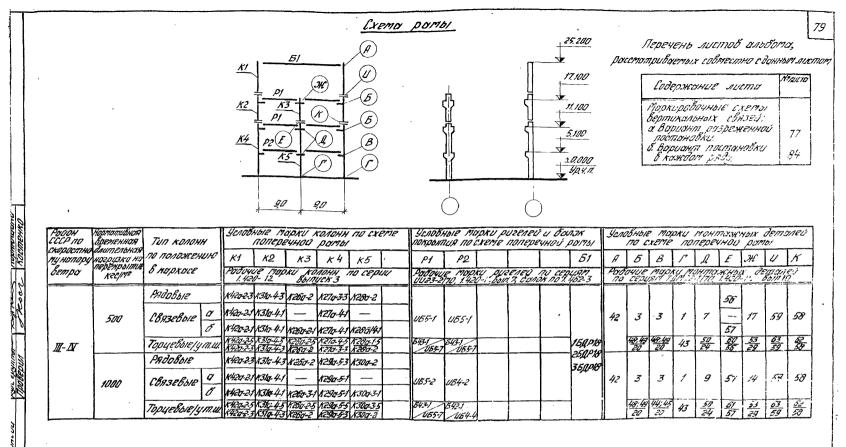

197

Маркировочная схета поперечной раты 2-9-3 (60, 60,72).

1,420-12 Boinyer D-2 Sucm. 32

^{1.} Укозония по притенению таркировочных ехет даны в пояснительной записке стр. 40-44. г. Марки балки покрытия уточняются по фактическит

HORPYSKOM.



2. Марка балки покрытия уточняется по фактическим

HORPY3KOM.

Μαρκυροβομμαμ εχεπα ποπερεμμού ραπω 2-9-4 (60,60,72).

1.420-12 Boinger 0-2

- Ухозония по применению маркировочных схем доны в пояснительной зописке спр. 40-44.
- д польтительног Запаска четочняются по фоктический нагрузкам.

TK 1976 Мархиравочная схема поперечной рамы 1,420-12 2-9-4 (60, 60, 72). Лист 34

ŧ.	
1	α
١.	7 . i

											7														Ľ	84
	Нормативная Временная	Тип колонн		Эсловн попер	IBIE MA PEHHOIX	U NOOL	ODOHH ODDOH	DO CXE	ממניוני	SCHOOL NO C	HOIE XEME	MODEU	PUZE	DELÍ PEMOS		40,00	SHBIE no c	MUD	NU D	MOR	MINO	HCHO!	IX O	tema.	neu	7
DOPPO U Nº nucma C	ANUMENTHOS HUROUSKOLI	TUTO TO SOUTH		KI	K2	153	154			pj	P2	<i>p3</i>	<i>P4</i>	P5	PS	A	5	8	7	1	1	H	U	ĸ.	n	19
MODNUPOBOY- HOÙ CXEMSI	<i>ชื่อที่คุดชื่อบ</i> คอบอห	в коркасе	·	P0004	IUR MO, 420-12	OKU K	BUTYL	NO CE	PUU	Pago.	1UP MO 3-2/70	ONU P	42 <i>E1124</i> 20-12	on sella	000	POOR	04UE 11128-	MODI 1/10	10 M	0HITIC 420-	134.HE	BIX L	Pemoi	NEU I	70 CE,	00
		PADOBBIE		K10-2-2	K20-2	K 650-32	K684-4									Ī	1	1	Ī	Ī	1	T	T	1	Ī	
	500	MOODONOHOIL	ſ				K88049								Ì			1		1	- 1					l
2-9-4(36)	I-I	ะชิคระริชเย	Q Q				K66a-4-1			455-1	UB5-1	U55-1				19	3	3	1	7	7	17	58	55		
3		торцевые		K10-1-5	K20-1-5	K65a-1-5	K88q-1-5			543-1	543-1	543-1				54:55	40,49	49-40	43	50	50	53	62			-
		y memnepamy, Wad	04020	Kta-2-2	K20-2	K650-3-2	K560-4			1155-7	U55-7					34	20	20	43	24		_		60		H
		padoboie		5/4-2-2		K650-3-2	KB50-4					-	<i>-</i> -			37	20	EU	70	27	27	22	20	56		H
	500	продольн. ро	M				K88a43	enap. pama																		
		CBA3E8b1E	Ø							455-1	455-1	U55-1				19	3	3	1	7	7	17	58	56		1
2-9-4(36)	117-11	LUNDEUDIE	0					1																		
4		торцевые		K10-1-5	K2a-1-5	K660-1-5	K880-1-5			543-1	543-1	543-1				54:55	48,49	48.49	43	50	50	53	62	60		ł
		<i>पु जाराभागरा पुरावापुरा</i> <i>पारीच</i>	4020	K1q-2-2	K20-2	K650-3-2	K660-4			455-7	U55-7	U55-7	l. —	<u> </u>		34	20	20	43	24		29	-			ł
		рядовые		K14-2-2	K20-2	1650-3-2	K880+4				-	-	<u> </u>	 -	-	-	20	20	7.7	27.	27	23	58	56		ļ
	500	прадальн. ра	מאנ				K56043],,,,,,	466-1		U56-1		U56-1											1
11-9-4(36)	I-II	cbasebbie	a				K58q-41			455-1	455-14	U55-1	U56-14	U55-1	1156-14	19	3	3	1	1	7	17	58	55	18	١
8			0								1									·						
		торцевые		110-1-5	K20-1-5	K 650-1-5	K5601-5			543-1	5441	543-1	544-1	543-1	5441	5455	48:49	48:49	43	50	50	53	62	-	<u>. </u>	Ŧ
		y mennepanya way	NOZO	814-2-2	K2q-2	K850-3-2	K66a-4		, -	U55-7	1156-17	U55-7		 	U56-17	34	20	20	43			29		\neg	53	t
	/	рядовые		K10-2-2	K20-2	K650-3-2	K6604			1	-	0257	00017	0007	000-17	107	a	20	43	24	24	29	58	56	30	1
	500	продольные	P				K66043	chapes.		1	U55-1		U56-1		U56-1											
17-9-4(36)	<i>III- IX</i>	cb93eboie	a							105-1	U56-14	455-1	U58-14	455-1	U56-14	19	3	3	1	7	7	17	50	55	18	-
	111-12		0							1														79	10	1
. g		торцевые		X10-1-2	X 20-1-5	K65015	K884-1-5	1	· .	543.1	5441	543-1	544-1	543-1	5441	54:55	48,49	49.49	43	50	50	53	-			ł
		y merinepanyp uba	HOZO	K1q-2-2	K20-2	1850-3-2	K560-4			1	+	U55-7			455-17	34	20	20	43	24			52	60	53	+
				· · · · · ·							F-00 //	10001	1000-11	10001	40071	127	EU	20	73	27	27	29	58	55	30	ŀ

Данный лист см. совместно с листами 3,4.8и9.

TK 1976

ТК Таблица рабочих тарок ригелей, колонін и монтажных деталей. Вариант с притененцет каланн из бетона тарки, води

1.420-12 Bunyck 0-2 Jucm 35

1 81

Wuxoo	Норпативная		[:	Условно	NO MOD	NU KO	понн п	O CXEMOR	y Sene	BHBIE	e M	OPKU ONE,DES	DURE	184	.	4010	BHOIL	MOD	14	MOH	ngs	EH31-	Y 0	ema.	1184	 _
DONEDEVHOU		TUN KONOHH NO NONOMEHU		none) Kl	K2	U 11,00	100,1840.	אוטס צו		P		pz pz	P4 .	00M01	PS	Я	5	B	7	one p			U	101 K	s	1
	HORDYBKY U	по положени в каркасе	· 11-		e Map		NOHH N	o cepuu	11			1	' ' !	no cep Boinge	Н	Pool TU	14UE M 22-	MOJON 1/10	UM U1.	0HI 1420-	NAC	HAIX	gem.		100	1200
	·	PADOBOIE		110-4-2	K20-3	K670-42	K680-8			T	T															
		NPODOMBHBIE	'				K680-5-3						1			Ì						1	1			
2-9-4(36)	1500	c base bose	0				K 684-5-1		U55	1 453	5-3 6	164-3				19	3	3	1	9	9	17	58	55		-
3	<i>I-I</i> I	торцевые		Kln-2-5	K20-3-5	K67a-7-5	K68a-25		543	1 543	7/	542-1				54.55	40-40	44,45	43	50	50	53	52	60		\vdash
		y mennegamyp. usa		K/0-4-2	7.00	K570-4-2	-				-	154-4				34	20	20	43	24	24	29	58	55		\vdash
		рядовые		K10-4-2		K670-4-2			-	+-		- / /									-					+
		продольн. ра	מו				K680-63		٦																	
		<i>c6яэย8ые</i>	9				-		455	055	5-3	1154-3				19	3	3	1	9	9	17	58	56	_	1
2-9-4(36)	1500	LONSEDOIE	0				_	1			1															
4	III- ZV	торцевые		K10-2-5	X20-3-5	K670-3-5	X 680-2-5		543	1 54	3-1	542-1				54,55	48,49	44,45	43	50	50	53	62	50		Ť
		<i>प ताश्चात्रपूर्वा</i> पुर	04020	K1q-4-2	x20-3	K574-4-2	K680-5		U55-	7 115	5.7	154-4				34	20	22	43	24	24	29	58	58		T
		padobose			120-3					1	_										_				_	t
		продольн ра	n				K88053		U55	1 115	5.14	1155-7	UEEJE	U54-3	//E.E.20	10	3	3	,	9	9	17.	478	55	18	1,
N-9-4(38)	1500	เธตระชชย	0				K680-5-1					2000	טרטעט	0070	00923	19			–		١	<i>".</i>	10		100	1
, ,	1,,,,,		0		ļ															'						
8	<i>I-I</i>	торцевые	31	X10-2-5	120-3-5	K670-3-5	1684-2-5		543	154	4-1	543-1	544-1	542-1	543-2	54:55	48,49	44,45	43	50	50	53	62	60	53	-
		y memnepamy). Waa	DHOZO	K10-4-2	K20-3	1570-42	K584-6		455	7 450	6-17	U55-7	U56-17	U54-4	U55-30	34	20	20	43	24	24	29	58	56	30	É
		PADOBAJE		K10-4-2	K24-3	1570-4-2	K680+6			1										<u> </u>						t
	1	продольны	e				K68a-6-3		1155	1 1151	511	11557	115640	454-3	(/25.00	10	7	~		9	9	17	c0	56	10	1
N-9-4(35) 9	1500 III-II	<i>เหลวย</i> ชชาย	0			<u></u>	=			, 000	777	-	400-10	UD7-5	405-29	/9	3	3	1	9	9	//	20	20	10	ľ
,	W-74	торцевые		Kla-2-5	120-3-5	1570-3-	5 K 684-2-5		543	1 54	14-1	543-1	544-1	542-1	543-2	54:55	48.49	44.45	43	50	50	53	52	60	53	+
		y memnegany) Waa	- 11			 	1680-5		1155	7 115				454-4			20	20	43	24	24		58	58	30	F

Данный лист см. совтестно с листами 3,4,8 и 9.

Таблица рабочих торок ригелей, коланн и тонтажных детолей. Ворионт С применениет колонн из бетона торки "600." 1.420-12 Выпуск 0-2

																_										82
	ИШФР поперечной	Нармативная Временная		Услов, попер	HBIE MO	IPKU KO	010HH 1 2016H	no cxe	PMCIM M					eneŭ pai		401	108 HB 110	e MC	ipku ne	MOR	epe	XHO	ux a	ema amb	neu	7 .
	pambi u Nº suema	нагрузка и	ППИП КОЛОНН ПО ПОЛОЖЕНИН	KI	K2	<i>K3</i>	K4			PI	P2	РЗ	P4	P5	P6	A	5	В	7	A	E	*	4	K	1	M
	марки ровоч Ной Схемы		8 Kapkace	Ραδο	1.420	9PKU 1	KONOH	H 110 C BUN. 2.	ерии	Paso UU 23	4UE MC -2/70,1	торцев	IZENEÙ BIX 170 f	no cep 420-12	eiu Bun.7	Pað	PURM	MOP	KU 1 122-	40HM 1/70	nax.	HBIX 420	дет - 12	anei 86	1 10	ce-
			PadoBNE	Kla-3-3	K120-3	K13023	K140-6						1			1										
	,	500	Колонны продольных рам	_			K14a-4-3																			ŀ
	0 ((0)		связевые				K140-4-1			455-1	455-1	U65-1		-	_	19	3	3	1	7	7	17	58	5€		_
	2-9-3(48)	I- <u>I</u> V	S		<u> </u>	K13a-3-1	K140-6-1						L													
	1/		Порцевые	KIIa-3-5	K12a-3-5	K13a-2-5	K140-6-5			543-1	543-1	643-1				-	48,49	48,49	43	50	50	53	62	60		_
			У температурног шва	KII0-3-3	K120-3	K13a-2-3	K140-6			465-7	455-7	455-7			_	34	20	20	43	24	24	29	58	56		_
T			Рядовые	K15a:3:3	K16a-5	K17053	K18a-6															Ì				
10			KONOHHЫ Продольных рам	I —	K160-6:3		K180-8-3										•									ĺ
7.KU	0 - 4/6	1000	CBA3EBbie		K160-6-1		K180-8-1			465-1	455-2	454-2			_	19	3	3	1	9	9	17	58	56	· —	-
3	2-9-4 (48)	<u> </u>	Copseone	K15a-3-1	K160-5-1	K170-5-1	K180-6-1	1		L			ļ													L
	12		Порцевые		K160-5-5	K170-5-5	K180-6-5	,		543-1	<i>543-1</i>	542-1					48,49	44,45	43	50	50	53		60	_	_
X			У температурного шва	K150-3-3	K160-5	K1705-3	K1806			<i>Ц65-7</i>	465-7	454-4				34	20	20	43	24	24	29	58	56		_
3			Рядовые	K15a-4-3	K16a-7	K17a-5-3	K180-7							l												
			КОЛОННЫ ПРОВОЛЬНЫХ РАМ		K160-4-3		K1805-3										_						-0	_		
		1500	CB93eBNe		K160-11-1		K180-9-1	1		455-1	U <u>55-3</u>	U <u>64-3</u>	-			19	3	3	1	9	9	17	58	56	-	-
3	2-9-4(48)	<u>I-</u> <u>iv</u>	δ	K150-41	K160-4-1	K170-5-1	K180-5-1	1																		
i een	12		ППОРЦЕВЫЕ		K160-7-5	K17a-5-5	M8a-7-5			543-1	543-1	542-1				54,55	48,49	44,45	43	50	50	53	62	60	_	_
3			У-температурног Шва	X15a-4-3	K160-7	K17a5-3	K180-7			455-7	U55-7	<i>U54-4</i>				34	20	20	43	24	24	29	58	56	_	
9			PAROBBIE		K12a-3	K/3a-2-3	K140-6			1.5																
8		500	KONOHHW NDODOJEHWIX POM	/ —			K14a-4-3				U56-1		UE6-1		U56-1						. [
70	17-9-3 (48)	I-11	CBR3EBWE C				K140-4-1			455-1	456-14	1165-1	U56-14	1/55-1	456-14	19	3	3	1	7	7	17	58	56	18	8
9		- "	8			K13a-3-1	K140-6-1						L													
	13		Порцевые	K//Q13-5	K1203.5	KB0-2-5	K140-6-5			543-1	544-1	<i>543-1</i>	544-1	543-1	5441	54,55	48,49	48,49	43	50	50	53	62	60	53	50
\mathbf{M}		1	У температурног шва	K/1a-3-3	K12a-3	K13a-2-3	K14a-6			U55-7	U56-17	U55-7	456-17	U55-7	46617	34	20	20	43	24	24	29	58	5 6	30	27

Данный лист см совпестно с листами 11,12 и 13

TK

Маблица рабочих марок колонн, ригелей и монтажных депталей. Вариант с применением колонн из бетона марки "600"

37

1.420-12 BbINYCKO-2

Лист

Wugp	Нормо гивная	Мип колонн	li li		HGIE MC XEYHGIX	,	000HH 100901				CXEME	марк	u pul	гелей рама	5/	90	106H6	ie maj	oku 1e	MC /70/76	речи речи	19CH61	IX Pam	gemc 6/	างอบั	
поперечной рамы и М² Листа маркировоч	длительная нагрузкай Ветровой	то положени В каркаае	<i>1</i> 60	K1 Paso	K2	K3	к4	no ce	epuu	P1 Paso	P2	P3	P4	P5	P6 ·	A Pài	Б 504ие	В	l'	Д	E	ж	U	K	Л	M
HOÙ CXEME	PULICH REC/A	Рядовые		7	420 - 1		61n. 2			UU	23-2/70	, mopuje	BGIX 1701	. 420-12	8610.7	74	M22-1	1/70,	1.	420-	-12		86171.	10	-	
		LOVOHHPI LIBO DOVEHEIX L		.	K160-5 K160-6-3	K176-5-3 	K18a-6 X18o-8-3																			
17-9-4(48)	1000	Связевые -	σ δ μ		K160-6-1		K18a-8-1			U65-/	<u>U56-1</u> U56-14	U55-2	UE6-15	u64-2	U55-28	19	3	<i>3</i>	1	9	9	17	58	18	12	56
14	<i>I-IV</i>	Порц ев ае	^		K160-5-					54: 4																ļ
<i>''</i>		У глемператур шва	HOR		K16a-5-5		 			543-1	544-1	 	 		643-2		48,49	44,45	43	50	50	53	62	53	50	60
· · · · · · · · · · · · · · · · · · ·		······································			K16a-5					U65-7	U66-17	U65-7	U56-17	U5A-A	U55 ⁻³⁰	34	20	20	43	24	24	29	58	30	27	56
		PAGOBEIE KONOHHUI		(150-4-3	K16a-7	K/76-5-3	·																			
	1500	продоленых ро	a -		K160-4-3		K180-5-3			U55-1	U56-14	<u>455-3</u>	U66-16	U54-3	U55-29	19	3	3			9	17	58	18	12	56
17-9-4 (48)	I- <u>IF</u>	Связевые	-		K16a-11-1 K16a-4-1	47-E1	K180-9-1		·				=						1	9	9	"	30	10	12	
14		Mopyebore			K/6a-7-5				,	543-1	544-1	543-1	544-1	5 40 t	543-2	54 50	48 10	21 15	42		50	<i>5</i> 3	62	53	50	60
		у температург шва	1010			K170-5-3				l	UB6-17					34	20		43	50		_	58	30		60 56
-		Рядовые		Sto 33		K26-2-3	-			003-7	UD6-17	UB5-7	U56-1/	U54-4	U65-30		20	20	43	24	24	29	20	30	27	30
		продоленых ра	M				K22043										,									
2-0-3/cn 49	500	C693e661e	a		-	<u> </u>	K220-4-1			U55-1	U55-1	U55-1				19	3	3	1	7	7	17	<i>\$8</i>	ડ્ફ		
2-9-3 (60,48)	I-II		δ		_	K26-3-1	K226-1									·										—
15		Порцевые		110-3-5	K/2a-3-5	K2la-2-5	K220-6-5			<i>643-1</i>	543-1	543-1				54.55	48,49	48,49	43	50	50	53	62	60		
	,	у температург шво		116-33	K12a-3	KE16-23	кга-6			U55-7	U55-7	U65-7				34	20	20	43	24	24	29	58	<i>5</i> 6		
		Рядовые		(15a-33	K16a-5	K23a-5-3	K24a-6																			
	100	продоленых ро	ЭМ		K160-6:3		K2483																			
2-9-4/60.48	1000	୯၆୩୬୯୫ରେ	a		K160-6-1		K240-8-1			U55-/	U55-2	U64-2				19	3	3	1	9	9	/7	58	56		
16	I- <u>IÝ</u>		δk	(15a-3-1	K160-5-1	K230-5-1	K240-6-/																			
		Порцевые		15o3-5	K16a-5-5	K230-55	K240-6-5			543-1	543-1	542-1				<i>54.5</i> 5	48.49	44, 45	43	50	50	53	62	60		
		у температурі шва	K	<150-3-3	K16a-5	K230-53	K24a-6			<i>U55</i> -7	U65-7°	U54-4				34	20	20	43	24	24	29	58	56		

Донный лист см. совнестно с листоми 14,15 и 16

TK

Паблица робочих марок колонн, ригелей и монтажных деталей. Вариант с применением колонн из бетона, марки "600" 1.420-12 661 nyck 0-2 Nucm 38

· — /

1											•	•														L	
		Нориативна	, ,	11	Челові попер	HGIÈ MO DEYHGIX	u np	холонн холонн	no cxe	MPM		BHGE XEME	морки попере	PUP	елец рамы		Yen	овн <i>в</i> о 170	e Maj		мо поп	нта.	2KH61	× 2	emor wer	1eû	
	Nº AUCITO	временная чительная нагрузка и	Пип колоне по положени	i ii	KI	K2	<i>K</i> 3	K4			PI	P2	P3	P4	P5	P6	Ħ	Б	В	ľ	7.	E	<i>⊃</i> (c	U	κ	Λ	M
ľ		Gempobou Paŭona	в каркас	2	<i>Ρο</i> δος 	ije mo 1.420-	12 BE	CONOHH SIN B	no a	abaa	Pa80 UU 23	4UE MC 2/70, m	iopuebe	ureneŭ ix <i>n</i> o 1.4	по се, 420-12 в	ои <i>и</i> ып. 7	Po	бочие ГДМ 2	Mapk 2-1/	20 M 70 s	OHMO 1.	эжн 420	-12	pemo Be	ией г ил. 10	70 CE)	pusi
f			Pagobere	K	15a-4-3	K160-7	K23a-5-3	K24a-7		<u> </u>																	
			Колонны продель. Рам	HBIX		K16a-4-3		K24a-5-3		<u> </u>	U55-1	U65-3	U54-3	_			19	3	3	,	9	9	17	58	56		_
		1500	C6 93e6ale	9		K16a-11-1		K24a-9-1	<u> </u>	ļ											J						
	2-9-4 (60,48)	Į- <u>Ĩ</u> Ÿ		SK	(15a-4-1	K16a-4-1	K23a-5-1	K240-51		_	ļ	ļ															
1	16		Mopueleie		K/50-4-5	K16a-7-5	K230-5-3	K246-7-5		<u> </u>	543-1	543-1	542-1				<i>54.5</i> 5	48,49	44.45	43	50	50	<i>5</i> 3	62	60		_
-	·		У температур шва	HOTO	(150-43	K16a-7	K23a-5-3	K24a-7			U55-7	UБ5-7	U54-A			-	34	20	20	43	24	24	29	58	56	_	_
Τt			Рядовые		(10-3-3	K12a-3	K2la-2-3	K220-6																			
			КОЛОННЫ Продоленых р	OM				K226-4-3			UB 5·1	<u>U</u> 56-1	U65-1	U56-1		<u>U56-1</u>			_ '		·	_					
	17-9-3(60, 48)	<i>500</i>	Связевые	a				K22a-41		ļ	UB54	U56-14	4054	U56-14	U55-1	U56-14	19	3	3	1	(7	17	58	56	18	8
•	•	<i>I~I</i> V		δ			K210-3-1	K22a-6-1		ļ							<u></u>										
Н	17		Порцевые		(//a-3-5	K12a-3-5	K2la-2-5	K22-6-5		 	543-1	544-1	543-1	544-1	543-1	544-1	54,55	48,49	48,49	43	50	50	<i>5</i> 3	62	60	53	50
			у температурн шва	oro k	:lla-3-3	K125-3	K210-23	K285-6			IJ <i>55</i> -7	UB6-17	U65-7	U56-17	UБ5-7	U56-17	34	20	20	43	24	24	29	58	56	3D	27
\			Рядовые	K	(150 3 3	K16a-5	K230-5-3	K240-6		ļ	1															-	-
			Колонны Продоленых рат	<u> </u>		K160-6-3		K84a-8-3		ļ	U55-1	<u>U66-1</u>	U65-2	U56-15	U54-2	U55-28	Ig	3	3	,	g	9	17	58	56		
H		1000	Связевые	9		K16a-6-1		K24a8-1				456-14								,			.,		26	18	12
	п- [:] g-4(60, 48)			δ K	(15a-3-1	K160-51	K230-5-1	K24a-6-1			 	·															
	18	<i>I-<u>IV</u></i>	Порцевые		(15 03 5	K16a-5-5	K23 <u>a</u> 55	K24a-6-5			5 <i>4</i> 3-1	544-1	543-1	544-1	542-1	<i>543-2</i>	54,55	48,49	44,45	43	50	50	<i>5</i> 3	62	60	53	50
	,,		У температург шва	4070 K	(15a-3-3	K16a-5	K 230-5-3	K24a-6		ļ	U55-7	U66-17	U65-7	U56-17	U54-4	U6 5:30	34	20	20	43	24	24	29	58	56	30	27
H			Рядовые		150-4-3	K16a-7	K23053	K24a-7		ļ	Į.																
			Ubodoveneix ba	M	·	K16a-4-3		K240-5-3		<u> </u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1:57.10	115.52												1		
		1500	Связевые	a		K160-11-1		K240-91		ļ	405-1	<u>UB 6-14</u>	U65-5	<u> 166-16</u>	<u>U54-3</u>	UE5-29	19	3	3	1	9	9	17	28	ઽ૬	18	12
	17-9-4(60,48)	I- <u>īr</u>		δ A	(15a 4-1	K16a-4-1	K230-5-	K24a-5-		ļ	 		<u> </u>														
\prod	18		Порцевые	k	(150~4-5	K16a-7-5	K230 5-5	K24-7-5	,		<i>543-1</i>	<i>544-1</i>	543-1	544-1	542-1	543-2	54,55	48,49	44,45	43	50	50	53	62	60	53	50
	,0		у температург шва	YOTO K	(150-4-3	KIGO-7	K230-5:	K240-7		8	UB5-7	UBG-17	U65-7	U56-17	U5 4-4	U55-30	34	20	20	43	24	24	29	58	56	30	27

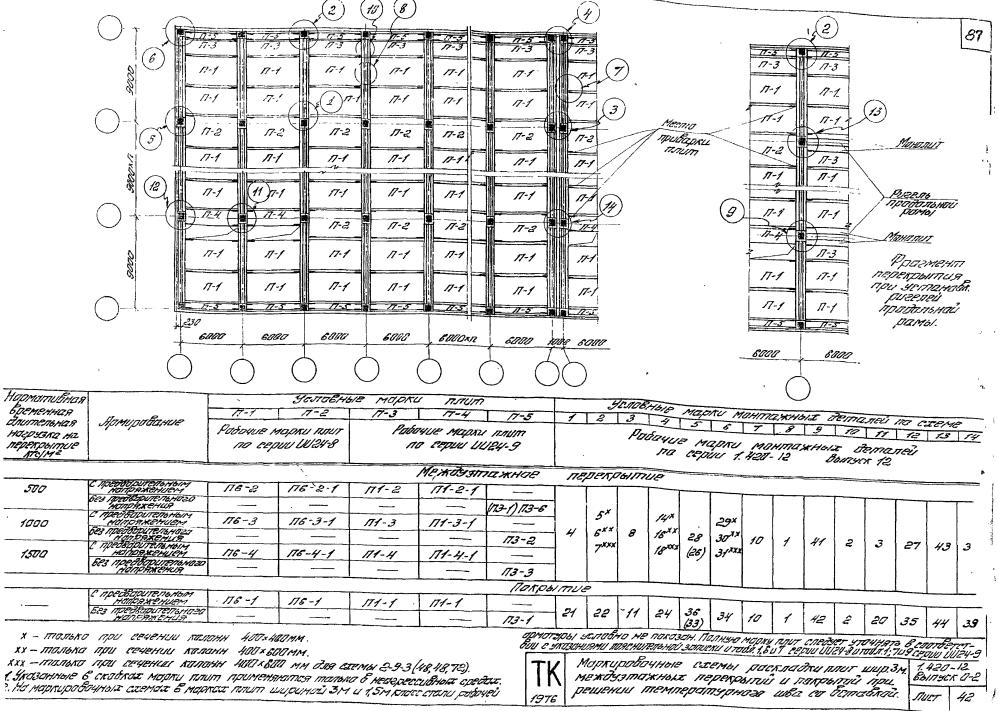
Данный лист см. совместно с листами 16,17и18.

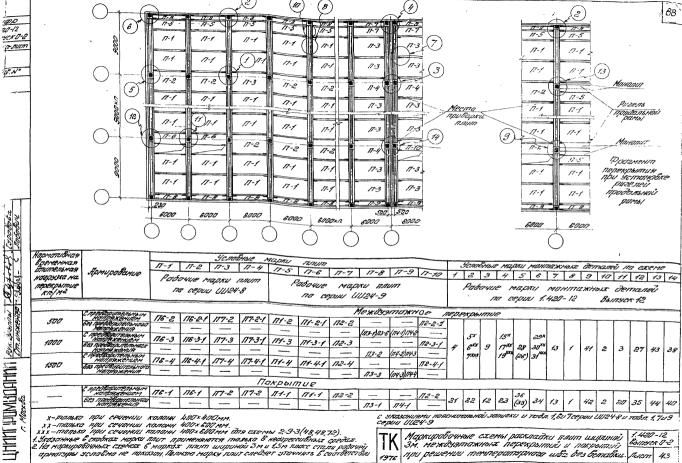
ТК Паблица рабочих марок колонн, ригелей и монтажных деталей. Вариант с применением колонн из бетона марки "600"

1.420-12 661nyck 0-2 Nucm 39

1																								L	
	Mupp	Нартативная	_	Senot nones	NOS ME	PAU R	ONOHH .	no exemple	1 9000	CXEME	mapky nonep	PUZE	PUMBI	,	Yen	08 HB16	. MOD TEMO	KU no	MOHI	77 0 X	CHOI.	Z Ö	emos	nea	
	nonépeyxoù pamsi u Nº nuema e	anumensuns	Тип колонн по положению	11	12	13	14		D/	P2	<i>[73</i>	P4	P5	Po	A	Ħ	B	7	\mathcal{A}	E	ж	4	T	1	11 /1
	MUDRUPOBOY- HOÙ CXEMSI	bemoobou \	8 raprace	Potos	100 MOD	ZNU NO	JOHH WAYCK	no cepuu	Paga UU2	448 MG 3-2/10	DKU P	UZENEC 10-12 b	i no ce Sunyes	7 DURM	Pou cepu	FOYUE AM TU	Map. 1722	-1/10	10HM 1; 1.4	0xcx 20-	1812°	demi	ONEÚ NY CR	10	
			PAROBUS	N250-23	1260-1	K27046-3	N28013					1										П			T
		İ	Прадальных рам	T	128013		1280133																.		
		500	20 0 0	1	_	_	128031		455-1	U55-1	455-1		_	_	19	3-	3	/	7	7	17	58	56	_	
ĺ	2-9-3/60/	<i>I-<u>I</u></i>	C82386418 0	† =		127016-1	128013-1											 	′		''	00			
l	19		Торцевые	1250-1-5	1260-1-5	12743-5	128025	9	E43-1	543-1	543-1	_	_	_	54,55	48,49	48:49	43	50	50	53	62	60	_	
1			У температурног шва	N2502-3	1260-1	12786-3	1.287.7		455-	1155-7	U55-7	_		_	34	20	20	43	24	24	1	1	56	_	1-1
FT			PAROBNE		1260-1	127016-3		-		1								l —							+1
1000			Продальных рам	1-	1260-1-3		1280,03	7		456-1		U56-1		U56-1								Ιl			
Men	/ !	500	Связевые 2				N280107	1	455-	1155-14	1155-1	U56-14	U55-1	U56-14	19	3	3	1	7	7	17	58	55	18	8 -
rap	- / [<u> </u>	6	1		1200-1	828ā34																		
	21		Торцевые	1250-1-5	1260-1-3	127633	12802		543-1	544-1	543-1	544-1	543-1	-644-1	54,55	48:49	48:49	43	50	50	53	62	60	53 5	50-
1/3			У темперотурног шба	125023	1260-1	K27518-3	N28013		1055	U56-17	U55-7	U56-17	U55-7		-	20	20	43	24	24	\vdash	-+		30 2	
3 8			PADOBUE		N700-3		 	, -									-				-		-		+
31			Продальных рам		1700-14-3		K300-73		1,,,,	,,,,,,					,,	_	_	,			ا۔۔ا			_	_ _
			Связевые 0	_	1700-3-1	1_	1300-7-1		UB3-1	<u>U55-3</u>	<u>U54-3</u>	_	-	-	19	3	3	1	9	9	17	58			57
000	2-9-4/60/		B	1898A-1	1700-3-1	129051	1300-71								,	·									
080		1-11	Торцевые		1700-3-5	1290-1-5	K300-35	5	543-1	E43-1	542-1	_		_	54:55	48,49	44:45	43	50	50	53	52	-		-61
100	20		У температурног шва	1684-3-3	X700-3	1294-4-3	1300-7		455	1 055-7	U54-4	_		_	34	20	20	43	24	24	29	58	-	_	- 57
			PAROBAIL	1690-3-3	K700-3	1290-4	K300-7			-		 								-	-	-		-	+
21		Продольных рам		1700H	+	K300-7:	3	7															ı	1 3	
240		1500	Chasebue a		A700-3-1	_	1300-7-1		U55-,	<u>U56-14</u>	<u>U55-3</u>	U56-16	<u>U54-3</u>	UB5-29	19	3	3	1	9	9	17	58	18	12	- 5
10	11-9-4/60/	T-11	OURSEDON.	159014	1700-3-1	18290-5-1	N300-7-	1	-1	-	-	-	_	-						.					
1	22		Торцевые	1	1700-3-	·			543-1	544-1	F43-1	F44-1	642-1	F43-0	54.54	42.40	44.45	43	50	50	53	62	53	50	
131	ı		У температурног шва	20	3 N 700-3	 	+-	11	U55-	+		 	454-4						24	-				20	P
M		<u> </u>		11.000.00	7.700	7.2027.	11000	1	003	000-47	003-7	400-11	4044	00330	34	20	20	13	24	24	29	20	30	27	-57

Данный лист см. совнестно с листами 19,20,21422


TK


Таблица рабочих марок ригелей, колонн 8м1.4. и мантажных деталей. Вариант с применением колонн из бетона марки, 600° ли

1 2																	•			,	,					85
Wyp	ישעייני	Нормативная В ременная	Tun Konokk		School	HBIE MO	PAU NO	TATOMH TOTOASI	TO CXC	ONOM OM	4000	Cene	TOTED	PONS	eneu	10	401	70846	e Mak	PSU P 70	MOH	770/3	CHBI	z 6	emai	nev
DOMA	' // L	7avmoas vno	no nonoxeen	1410	11/	N2	13	14	15		P	PZ	P3			51	A	5	B	/	4	E	240	4	1	
NODRUD HOÚ CX	emel	HUZDYSKŲ U Benipolau O QUO H KZY	8 raprace		P000	YUE MO	YORU N	BUNYE	1 10 CC	מטספ	Pada	1448 M 3-2/10	90KY 1	742EAE 10-12	d na ca	7 7 T	Pad TA	M22.	MOOK 1/70	4 1	1420	12	Soin	ema. UCK	neŭ n	o cepus
1			Padolose	•	1420+3	K314-4-3	1280°E	127017-3	K28ā13									Γ					T	Í	Т	T
-	İ	Ĺ	Продольных р	7011														1								1
12 - 44		1000	Связевые	a	1420-1-1	1310-4-1		K276-17-1			1155-2	455-2				15AP18	40	3-	3	1	9	55	14	59	58	
2-9-4/5	4,64,72)	I-II		0	1420-1-1	1310-4-1	128024	K2%-17-1	K28413-1			}				25AP18 35AP18	42	-		, , , , , , , , , , , , , , , , , , ,		30	7	33	30	
33			Торцевые		KHZa+5	1310-4-5		 			543-1	543-1				344196		48:49	48,49	43	50	6/7		C	62	
	- 1		Y mennegamyp woo	THOSO	142013	13/0-4-3	1260°2	K27017-3	128413		1155-7	UE5-7				1	·	20	_	43	24		53 29	59		_
			Padobue		· -						l				 		ļ	120	20	""	24	30	29	39	58	
2		Ī	Moodansus ,	an																						
V 2		Ī	<i>โ</i> ธรระธ์มะ	9					,																ļ	
4			COA3 60 876	8			•																			
1			Topyebsie								1	-			ŀ											
1			У тепператур шва	THOED																						
3			Patobose													1	-	†			-				-	+
3			Прадольных	DOM															· '							
	1		Связевые	a																				-	l	1
3	1	. [6			<u> </u>											ŀ	ĺ							ı
2	1		Topyebue	-													į	1		1					1	
<u> </u>	l	[У температур шва	ОНОЕО																						
			Padobare														-		-			-			\dashv	
	į		Продальных ,	0011							1															
1.		Ī	Связевые	9			,				1															
4			CUNSEUDIE	8							1														- 1	
		Ī	Торцевые	-							1]						-					
	Ì		Y memnepamyp wba	DHOZO																						

Данный лист см. совнестно с личтом 33

Таблица рабочих марок ригелей, колонн В.420-12 и монтажных деталей. Вариант с применением колонн из детана марки "600" Лист И

15749-01